
Additive Groves of Regression Trees

Daria Sorokina, Rich Caruana, and Mirek Riedewald

Department of Computer Science, Cornell University, Ithaca, NY, USA
{daria,caruana,mirek}@cs.cornell.edu

Abstract. We present a new regression algorithm called Additive Groves
and show empirically that it is superior in performance to a number of
other established regression methods. A single Grove is an additive model
containing a small number of large trees. Trees added to a Grove are
trained on the residual error of other trees already in the model. We be-
gin the training process with a single small tree and gradually increase
both the number of trees in the Grove and their size. This procedure
ensures that the resulting model captures the additive structure of the
response. A single Grove may still overfit to the training set, so we further
decrease the variance of the final predictions with bagging. We show that
in addition to exhibiting superior performance on a suite of regression
test problems, Additive Groves are very resistant to overfitting.

1 Introduction

We present a new regression algorithm called Additive Groves, an ensemble of
additive regression trees. We initialize a single Grove with a single small tree.
The Grove is then gradually expanded: on every iteration either a new tree is
added, or the trees that already are in the Grove are made larger. This process
is designed to try to find the simplest model (a Grove with the fewest number
of small trees) that captures the underlying additive structure of the target
function. As training progesses, this algorithm yields a sequence of Groves of
slowly increasing complexity. Eventually, the largest Groves may begin to overfit
the training set even as they continue to learn important additive structure. This
overfitting is reduced by applying bagging on top of the Grove learning process.

In Section 2 we describe the Additive Groves algorithm step by step, be-
ginning with the classical way of training additive models and incrementally
making this process more complicated – and better performing – at each step.
In Section 3 we compare Additive Groves with two other regression ensembles:
bagged regression trees and stochastic gradient boosting. The results show that
bagged Groves outperform these other methods and work especially well on
highly non-linear data sets. In Section 4 we show that bagged Groves are resis-
tant to overfitting. We conclude and discuss future work in Section 5.

2 Algorithm

Bagged Additive Groves of Trees, or Additive Groves for short, is an ensemble
of regression trees. Specifically, it is a bagged additive model of regression trees

2

where each individual additive model is trained in an adaptive way by gradually
increasing both number of trees and their complexity.

Regression Trees. The unit model in a Grove is a regression tree. Algo-
rithms for training regression trees differ in two major aspects: (1) the criterion
for choosing the best split in a node and (2) the way in which tree complexity is
controlled. We use trees that optimize RMSE (root mean squared error) and we
control tree complexity (size) by imposing a limit on the size (number of cases)
at an internal node. If the fraction of the data points that reach a node is less
than a specified threshold α, then the node is declared a leaf and is not split
further. Hence the smaller α, 0 ≤ α ≤ 1, the larger the tree. (See Figure 7.)

Note that because we will later bag the tree models, the specific choice of
regression tree is not particularly important. The main requirement is that the
complexity of the tree should be controllable.

2.1 Additive Models — Classical Algorithm

A Grove of trees is an additive model where each additive term is represented
by a regression tree. The prediction of a Grove is computed as the sum of the
predictions of these trees: F (x) = T1(x) + T2(x) + · · ·+ TN (x). Here each Ti(x),
1 ≤ i ≤ N , is the prediction made by the i-th tree in the Grove. The Grove
model has two main parameters: N , the number of trees in the Grove, and α,
which controls the size of each individual tree. We use the same value of α for
all trees in a Grove.

In statistics, the basic mechanism for training an additive model with a fixed
number of components is the backfitting algorithm [1]. We will refer to this as
the Classical algorithm for training a Grove of regression trees (Algorithm 1).

The algorithm cycles through the trees until the trees converge. The first tree
in the Grove is trained on the original data set, a set of training points {(x, y)}.
Let T̂1 denote the function encoded by this tree. Then we train the second tree,
which encodes T̂2, on the residuals, i.e., on the set {(x, y−T̂1(x))}. The third tree
then is trained on the residuals of the first two, i.e., on {(x, y− T̂1(x)− T̂2(x))},
and so on.

After we have trained N trees this way, we discard the first tree and retrain it
on the residuals of the other N − 1 trees, i.e. on the set {(x, y− T̂2(x)− T̂3(x)−
· · · − T̂N (x))}. Then we similarly discard and retrain the second tree, and so
on. We keep cycling through the trees in this way until there is no significant
improvement in the RMSE on the training set.

Bagging. As with single decision trees, a single Grove tends to overfit to the
training set when the trees are large. Such models show a large variance with
respect to specific subsamples of the training data and benefit significantly from
bagging, a well-known procedure for improving model performance by reducing
variance [2]. On each iteration of bagging, we draw a bootstrap sample (bag)
from the training set, and train the full model (in our case a Grove of additive
trees) from that sample. After repeating this procedure a number of times, we

3

Algorithm 1 Classical additive model training

function Classical(α,N ,{x,y})
for i = 1 to N do

Tree
(α,N)
i = 0

Converge(α,N ,{x,y}, Tree
(α,N)
1 , . . . , Tree

(α,N)
N)

function Converge(α,N ,{x,y},Tree
(α,N)
1 , . . . , Tree

(α,N)
N)

repeat

for i = 1 to N do

newTrainSet = {x, y −
∑

k 6=i
Tree

(α,N)
k (x)}

Tree
(α,N)
i = TrainTree(α, newTrainSet)

until (change from the last iteration is small)

end up with an ensemble of models. The final prediction of the ensemble on each
test data point is an average of the predictions of all models.

Example. In this section we illustrate the effects of different methods of training
Additive Groves on synthetic data. The synthetic data set was generated by a
function of 10 variables that was previously used by Hooker [3].

F (x) = πx1x2

√
2x3 − sin−1(x4) + log(x3 + x5) −

x9

x10

√

x7

x8

− x2x7 (1)

Variables x1, x2, x3, x6, x7, x9 are uniformly distributed between 0.0 and 1.0
and variables x4, x5, x8 and x10 are uniformly distributed between 0.6 and 1.0.1

Figure 1 shows a contour plot of how model performance depends on both
α, the size of tree, and N , the number of trees in a Grove, for 100 bagged Addi-
tive Groves trained with the classical method on 1000 training points from the
above data set. The performance is measured as RMSE on an independent test
set consisting of 25,000 points. Notice that lower RMSE implies better perfor-
mance. The bottom-most horizontal line for N = 1 corresponds to bagging single
trees. The plot clearly indicates that by introducing additive model structure,
with N > 1, performance improves significantly. We can also see that the best
performance is achieved by bagging Groves containing 5-10 relatively small trees
(large α), while for larger trees performance deteriorates.

2.2 Layered Training

When individual trees in a Grove are large and complex, the Classical additive
model training algorithm (Section 2.1) can overfit even if bagging is applied.
Consider the extreme case α = 0, i.e., a Grove of full trees. The first tree will
perfectly model the training data, leaving residuals with value 0 for the other

1 Ranges are selected to avoid extremely large or small function values.

4

Algorithm 2 Layered training

function Layered(α,N ,train)
α0 = 0.5, α1 = 0.2, α2 = 0.1, . . . , αmax = α

for j = 0 to max do

if j = 0 then

for i = 1 to N do

Tree
(α0,N)
i = 0

else

for i = 1 to N do

Tree
(αj ,N)

i = Tree
(αj−1,N)

i

Converge(αj ,N ,train,Tree
(αj ,N)

1 , . . . , Tree
(αj ,N)

N)

trees in the Grove. Hence the intended Grove of several large trees will degenerate
to a single tree.

One could address this issue by limiting trees to very small size. However, we
still would like to be able to use large trees in a Grove so that we can capture
complex and non-linear functions. To prevent the degeneration of the Grove as
the trees become larger, we developed a “layered” training approach. In the first
round we grow N small trees. Then in later cycles of discarding and re-training
the trees in the Grove we gradually increase tree size.

More precisely, no matter what the value of α, we always start the training
process with small trees, typically using a start value α0 = 0.5. Let αj denote the
value of the size parameter after j iterations of the Layered algorithm (Algorithm
2). After reaching convergence for αj−1, we increase tree complexity by setting
αj to approximately half the value of αj−1. We continue to cycle through the
trees, re-training all trees in the Grove in the usual way, but now allow them
to reach the size correspondent to the new larger αj , and as before, we proceed
until the Grove converges on this layer. We keep gradually increasing tree size
until αj ≈ α.

For a training set with 1000 data points and α = 0, we use the following
sequence of values of αj : (0.5, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005, 0.002, 0.001). It is
worth noting that while training a Grove of large trees, we automatically obtain
all Groves with the same N for all smaller tree sizes in the sequence. Figure 2
shows how 100 bagged Additive Groves trained by the layered approach perform
on the synthetic data set. Overall performance is much better than for the clas-
sical algorithm and Additive Groves of N large trees now perform at least as
well as Additive Groves of N smaller trees.

2.3 Dynamic Programming Training

There is no reason to believe that the best (α,N) Grove should always be con-
structed from a (≈ 2α,N) Grove. In fact, a large number of small trees might
overfit the training data and hence limit the benefit of increasing tree size in
later iterations. To avoid this problem, we need to give the Grove training al-
gorithm additional flexibility in choosing the right balance between increasing

5

tree size and the number of trees. This is the motivation behind the Dynamic

Programming Grove training algorithm.
This algorithm can choose to construct a new Grove from an existing one by

either adding a new tree (while keeping tree size constant) or by increasing tree
size (while keeping the number of trees constant). Considering the parameter
grid, the Grove for a grid point (αj , n) could be constructed either from its left
neighbor (αj−1, n) or from its lower neighbor (αj , n − 1). Pseudo-code for this
approach is shown in Algorithm 3. We make a choice between the two options
for computing each Grove (adding another tree or making the trees larger) in a
greedy manner, i.e., the one that results in better performance of this Grove on
the validation set. We use the out-of-bag data points [4] as the validation set
for choosing which of the two Groves to use at each step.

Figure 3 shows how the Dynamic Programming approach improves Additive
Groves over the layered training. Figure 4 shows the choices that are made during
the process: it plots the average difference between RMSE of the Grove created
from the lower neighbor (increase n) and performance of the Grove created from
the left neighbor (decrease αj). That is, a negative value means that the former
is preferred, while a positive value means that the latter is preferred at that grid
point. We can see that for this data set increasing the tree size is the preferred
direction, except for cases with many small trees.

This dynamic programming version of the algorithm does not explore all
possible sequences of steps to build a Grove, because we require that every Grove
built in the process should contain trees of equal size. We have tested several
other possible approaches that don’t have this restriction, but they failed to
produce any improvements and were noticeably worse from the running time
point of view. For these reasons we prefer the dynamic programming version
over other, less restricted options.

2.4 Randomized Dynamic Programming Training

Our bagged Additive Groves training algorithms so far performed bagging in
the usual way, i.e., create a bag of data, train all Groves for different vallues of
(α,N) on that bag, then create the next bag, generate all models on this bag;
and so on for 100 different bags. When the Dynamic Programming algorithm
generates a Grove using the same bag, i.e., the same train set that was used to
generate its left and lower neighbors, complex models might not be very different
from their neighbors because those neighbors already might have overfitted and
there is not enough training data to learn anything new. We can address this
problem by using a different bag of data on every step of the Dynamic Program-
ming algorithm, so that every Grove has some new data to learn from. While
performance of a single Grove might become worse, performance of Additive
Groves improves due to increased variability in the models. Figure 5 shows the
improved performance of this final version of Additive Groves training approach.
The most complex Groves are now performing worse than their left neighbors
with smaller trees. This happens because those models need more bagging steps
to converge to their best quality. Figure 6 shows the same plot for bagging with

6

0.16

0.2

0.2

0.
2

0.2

0.3

0.30.4
0.5

Alpha (size of leaf)

#t
re

es
 in

 a
 g

ro
ve

 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0
 1

 2

 3

 4

 5

 6

 7

 8

 9

10

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Fig. 1. RMSE of bagged Grove, Classical
algorithm

0.
11

0.11

0.12

0.12 0.12

0.13

0.13
0.13

0.16

0.16

0.16

0.2

0.2

0.2 0.2

0.3

0.3

0.4

0.5

Alpha (size of leaf)

#t
re

es
 in

 a
 g

ro
ve

 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0
 1

 2

 3

 4

 5

 6

 7

 8

 9

10

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Fig. 2. RMSE of bagged Grove, Layered
algorithm

0.1

0.1

0.11

0.11 0.11

0.12

0.12 0.12

0.13

0.13

0.13

0.16

0.16

0.16

0.2

0.2

0.2 0.2

0.3

0.3

0.40.5

Alpha (size of leaf)

#t
re

es
 in

 a
 g

ro
ve

 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0
 1

 2

 3

 4

 5

 6

 7

 8

 9

10

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Fig. 3. RMSE of bagged Grove, Dynamic
Programming algorithm

−
0.

05

−0.05

−0.05 −0.05

−0
.0

4

−0
.0

4

−0.04 −0.04

−0.03

−0
.0

3

−0.03 −0.03

−
0.02

−0.02

−0.02 −0.02

−
0.

01

−0.01

−0.01

0

0
0.

01

Alpha (size of leaf)

#t
re

es
 in

 a
 g

ro
ve

 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0
 1

 2

 3

 4

 5

 6

 7

 8

 9

10

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

Fig. 4. Difference in performance be-
tween “horizontal” and “vertical” steps

0.09

0.09

0.1

0.1
0.1

0.11

0.11
0.11

0.12

0.12 0.12

0.13

0.13 0.13

0.16

0.16
0.16

0.2

0.2

0.2 0.2

0.3

0.3
0.4

0.5

Alpha (size of leaf)

#t
re

es
 in

 a
 g

ro
ve

 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0
 1

 2

 3

 4

 5

 6

 7

 8

 9

10

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Fig. 5. RMSE of bagged Grove (100
bags), Randomized Dynamic Program-
ming algorithm

0.09

0.09

0.1

0.1 0.1

0.11

0.11
0.11

0.12

0.12 0.12

0.13

0.13 0.13

0.16

0.16

0.16

0.2

0.2

0.2 0.2

0.3

0.30.4
0.5

Alpha (size of leaf)

#t
re

es
 in

 a
 g

ro
ve

 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0
 1

 2

 3

 4

 5

 6

 7

 8

 9

10

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Fig. 6. RMSE of bagged Grove (500

bags), Randomized Dynamic Program-
ming algorithm

7

Algorithm 3 Dynamic Programming Training

function DP(α,N ,trainSet)
α0 = 0.5, α1 = 0.2, α2 = 0.1, . . . , αmax = α

for j = 0 to max do

for n = 1 to N do

for i = 1 to n − 1 do

Treeattempt1,i = Tree
(αj ,n−1)

i

Treeattempt1,n = 0
Converge(αj ,n,train,Treeattempt1,1, . . . , Treeattempt1,n)

if j > 0 then

for i = 1 to n do

Treeattempt2,i = Tree
(αj−1,n)

i

Converge(αj ,n,train,Treeattempt2,1, . . . , Treeattempt2,n)

winner = Compare
∑

i
Treeattempt1,i and

∑

i
Treeattempt2,i on validation set

for i = 1 to n do

Tree
(αj ,n)

i = Treewinner,i

500 iterations where the property “more complex models are at least as good as
their less complex counterparts” is restored.

3 Experiments

We evaluated Additive Groves on 2 synthetic and 5 real-world data sets and
compared the performance to two other regression tree ensemble methods that
are known to perform well: stochastic gradient boosting and bagged regression
trees. Additive Groves consistently outperform both of them. For real data sets
we performed 10 fold cross validation: for each run 8 folds were used as a training
set, 1 fold as a validation set for choosing the best set of parameters and the
last fold was used as the test set for measuring performance. For the two syn-
thetic data sets we generated 30 blocks of data containing 1000 points each and
performed 10 runs using different blocks for training, validation and test sets.
We report mean and standard deviation of the RMSE on the test set. Table 1
shows the results; for comparability across data sets all numbers are scaled by
the standard deviation of the response in the dataset itself.

3.1 Parameter Settings

Groves. We trained 100 bagged Additive Groves using the Randomized Dy-
namic Programming technique for all combinations of parameters N and α with
1 ≤ N ≤ 15 and α ∈ {0.5, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005}. Notice that with these
settings the resulting ensemble can consist of at most 1500 trees. From these
models we selected the one that gave the best results on the validation set. The
performance of the selected ensemble on the test set is reported.

8

California Elevators Kinematics Computer Stock Synthetic Synthetic
Housing Activity No Noise Noise

Additive Groves

RMSE 0.38 0.309 0.364 0.117 0.097 0.087 0.483
StdDev 0.015 0.028 0.013 0.0093 0.029 0.0065 0.012

Gradient Boosting

RMSE 0.403 0.327 0.457 0.121 0.118 0.148 0.495
StdDev 0.014 0.035 0.012 0.01 0.05 0.0072 0.01

Bagged trees

RMSE 0.422 0.44 0.533 0.136 0.123 0.276 0.514
StdDev 0.013 0.066 0.016 0.012 0.064 0.0059 0.011

Table 1. Performance of Additive Groves (Randomized Dynamic Programming train-
ing) compared to boosting and bagging. RMSE on the test set averaged over 10 runs.

Stochastic Gradient Boosting. The obvious main competitor to Additive
Groves is gradient boosting [5] [6], a different ensemble of trees also based on
additive models. There are two major differences between gradient boosting and
Additive Groves. First, boosting never discards trees, i.e., every generated tree
stays in the model. Grove iteratively retrains its trees. Second, all trees in a
boosting ensemble are always built to a fixed size, while Groves of large trees
are trained first using Groves of smaller trees. We believe that these differences
allow Additive Groves to better capture the natural additive structure of the
response function.

The general gradient boosting framework supports optimizing for a variety
of loss functions. We selected squared-error loss because this is the loss function
that our current version of the Groves algorithm optimizes for. However, like
gradient boosting, Additive Groves can be modified to optimize for other loss
functions.

Friedman [6] recommends boosting small trees with at most 4–10 leaf nodes
for best results. However, we discovered for one of our datasets that using larger
trees with gradient boosting did significantly better. This is not surprising since
some real datasets contain complex interactions, which cannot be accurately
modeled by small trees. For fairness we therefore also include larger boosted
trees in the comparison than Friedman suggested. More precisely, we tried all
α ∈ {1, 0.5, 0.2, 0.1, 0.05}. Figure 7 shows the typical correspondence between α
and number of leaf nodes in a tree, which was very similar across the data sets.
Preliminary results did not show any improvement for tree size beyond α = 0.05.

Stochastic gradient boosting deals with overfitting by means of two tech-
niques: regularization and subsampling. Both techniques depend on user-set pa-
rameters. Based on recommendations in the literature and on our own evaluation
we used the following values for the final evaluation: 0.1 and 0.05 for the regu-
larization coefficient and 0.4, 0.6, and 0.8 as the fraction of the subsampling set
size from the whole training set.

9

α # leaf nodes

1 2 (stump)
0.5 3
0.2 8
0.1 17
0.05 38
0.02 100
0.01 225
0.005 500

0 full tree

Fig. 7. Typical number of leaf nodes for
different values of α

100 200 300 400 500

0.48

0.5

0.52

0.54

0.56

0.58

0.6

bagging iterations

R
M

S
E

α = 0.1, n = 5
α = 0, n = 10

Fig. 8. Performance of bagged Grove for
simpler and more complex models

Boosting can also overfit if it is run for too many iterations. We tried up to
1500 iterations to make the maximum number of trees in the ensemble equal for
all methods in comparison. The actual number of iterations that performs best
was determined based on the validation set, and therefore can be lower than
1500 for the best boosted model.

In summary, to evaluate stochastic gradient boosting, we tried all combina-
tions of the values described above for the 4 parameters: size of trees, number
of iterations, regularization coefficient, and subsampling size. As for Additive
Groves, we determine the best combination of values for these parameters based
on a separate validation set.

Bagging. Bagging single trees is known to provide good performance by sig-
nificantly decreasing variance of the individual tree models. However, compared
with Additive Groves and boosting, which are both based on additive models,
bagged trees do not explicitly model the additive structure of the response func-
tion. Increasing the number of iterations in bagging does not result in overfitting
and bagging of larger trees usually produces better models than bagging smaller
trees. Hence we omitted parameter tuning for bagging. Instead we simply report
results for a model consisting of 1500 bagged full trees.

3.2 Datasets

Synthetic Data without Noise. This is the same data set that we used as a
running example in the earlier sections. The response function is generated by
Equation 1. The performance of Additive Groves on this dataset is much better
than the performance of other methods.

Synthetic Data with Noise. This is the same synthetic dataset, only this
time Gaussian noise is added to the response function. The standard deviation
σ of the noise distribution is chosen as 1/2 of the standard deviation of the

10

response in the original data set. As expected, the performance of all methods
drops. Additive Groves still perform clearly better, but the difference is smaller.

We have used 5 regression data sets from the collection of Lúıs Torgo [7] for
the next set of experiments.

Kinematics. The Kinematics family of datasets originates from the Delve
repository [8] and describes a simulation of robot arm movement. We used a
kin8nm version of the dataset: 8192 cases, 8 continuous attributes, high level of
non-linearity, low level of noise. Additive Groves show 20% improvement over
gradient boosting on this dataset. It is worth noticing that boosting preferred
large trees on this dataset; trees with α = 0.05 showed clear advantage over
smaller trees. However, there was no further improvement for boosting even
larger trees. We attribute these effects to high non-linearity of the data.

Computer Activity. Another dataset from the Delve repository, describes
the state of multiuser computer systems. 8192 cases, 22 continuous attributes.
The variance of performance for all algorithms is low. Additive Groves show
small (3%) improvement compared to boosting.

California Housing. This is a dataset from the StatLib repository [9] and it
describes housing prices in California from the 1990 Census: 20, 640 observations,
9 continuous attributes. Additive Groves show 6% improvement compared to
boosting.

Stock. This is a relatively small (960 data points) regression dataset from
the StatLib repository. It describes daily stock prices for 10 aerospace companies:
the task is to predict the first one from the other 9. Prediction quality from all
methods is very high, so we can assume that the level of noise is small. This
is another case when Additive Groves give significant improvement (18%) over
gradient boosting.

Elevators. This data set is obtained from the task of controlling an aircraft
[10]. It seems to be noisy, because the variance of performance is high although
the data set is rather large: 16, 559 cases with 18 continuous attributes. Here we
see a 6% improvement.

3.3 Discussion

Based on the empirical results we conjecture that Additive Groves outperform
the other algorithms most when the datasets are highly non-linear and not very
noisy. (Noise can obscure some of the non-linearity in the response function,
making the best models that can be learned from the data more linear than
they would have been for models trained on the response without noise.) This
can be explained as follows. Additive Groves can capture additive structure yet
at the same time use large trees. Large trees capture non-linearity and complex
interactions well, and this gives Additive Groves an advantage over gradient
boosting which relies mostly on additivity. Gradient boosting usually works best
with small trees, and fails to make effective use of large trees. At the same time
most data sets, even non-linear ones, still have significant additive structure. The
ability to detect and model this additivity gives Additive Groves an advantage

11

over bagging, which is effective with large trees, but does not explicitly model
additive structure.

Gradient boosting is a state of the art ensemble tree method for regres-
sion. Chipman et al [11] recently performed an extensive comparison of several
algorithms on 42 data sets. In their experiments gradient boosting showed per-
formance similar to or better than Random Forests and a number of other types
of models. Our algorithm shows performance consistently better than gradient
boosting and for this reason we do not expect that Random Forests or other
methods that are not superior to gradient boosting would outperform our Ad-
ditive Groves.

In terms of computational cost, Additive Groves and boosting are compa-
rable. In both cases a large number of tree models has to be trained (more
for Groves) and there is a variety of parameter combinations that need to be
examined (more for boosting).

4 Bagging Iterations and Overfitting Resistance

In our experiments we used a fixed number of bagging iterations and did not
consider this a tuning parameter because bagging rarely overfits. In bagging the
number of iterations is not as crucial as it is for boosting: if we bag as long
as we can afford, we will get the best value that we can achieve. In that sense
the experimental results we report are conservative and Additive Groves could
potentially be improved by additional bagging iterations.

We observed a similar trend for parameters α and N as well: more complex
models (larger trees, more trees) are at least as good as their less complex coun-
terparts, but only if they are bagged sufficiently many times. Figure 3.1 shows
how the performance on the synthetic data set with noise depends on the num-
ber of bagging iterations for two bagged Groves. The simpler one is trained with
N = 5 and α = 0.1 and the more complex one is trained with N = 10 and α = 0.
We can see that eventually they converge to the same performance and that the
simpler model only does better than the complex model when the number of
bagging iterations is small.

We observed similar behavior for the other datasets. This suggests that one
way to get good performance with Additive Groves might be to build the most
complex models (large trees, many trees) that can be afforded and bag them
many, many times until performance tops out. In this case we might not need
a validation set to select the best parameter settings. However, in practice the
most complex models can require many more iterations of bagging than simpler
models that achieve almost the same level of performance much faster. Hence
the approach that used in our experiments can be more useful in practice: select
a computationally acceptable number of bagging iterations (100 seems to work
fine, but one could also use 200 or 500 to be more confident) and search for the
best N and α for this number of bagging iterations on the validation set.

12

5 Conclusion

We presented a new regression algorithm, bagged Additive Groves of trees, which
is an additive ensemble of regression trees. It combines the benefits of large trees
that model complex interactions with benefits of capturing additive structure by
means of additive models. Because of this, Additive Groves perform especially
well on complex non-linear datasets where the structure of the response function
contains both additive structure (which is best modeled by additive trees) and
variable interactions (which is best modeled within a tree). We have shown
that on such datasets Additive Groves outperform state-of-the-art techniques
such as stochastic gradient boosting and bagging. Thanks to bagging, and the
layered way in which Groves are trained, Additive Groves resist overfitting—
more complex models tend to achieve the same or better performance as simpler
models.

Additive Groves are good at capturing the additive structure of the response
function. A future direction of our work is to develop techniques for determining
properties inherent in the data using this algorithm. In particular, we believe we
can use Additive Groves to learn useful information about statistical interactions
between variables in the data set.

Acknowledgements. The authors would like to thank Daniel Fink, Wes
Hochachka, Steve Kelling and Art Munson for useful discussions. This work was
supported by NSF grants 0427914 and 0612031.

References

1. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Springer (2001)

2. Breiman, L.: Bagging Predictors. Machine Learning 24 (1996) 123–140
3. Hooker, G.: Discovering ANOVA Structure in Black Box Functions. In: Proc.

ACM SIGKDD. (2004)
4. Bylander, T.: Estimating Generalization Error on Two-Class Datasets Using Out-

of-Bag Estimates. Machine Learning 48(1–3) (2002) 287–297
5. Friedman, J.: Greedy Function Approximation: a Gradient Boosting Machine.

Annals of Statistics 29 (2001) 1189 – 1232
6. Friedman, J.: Stochastic Gradient Boosting. Computational Statistics and Data

Analysis 38 (2002) 367 – 378
7. Torgo, L.: Regression DataSets.

http://www.liacc.up.pt/˜ltorgo/Regression/DataSets.html
8. Rasmussen, C.E., Neal, R.M., Hinton, G., van Camp, D., Revow, M.,

Ghahramani, Z., Kustra, R., Tibshirani, R.: Delve. University of Toronto.
http://www.cs.toronto.edu/˜delve

9. Meyer, M., Vlachos, P.: StatLib. Department of Statistics at Carnegie Mellon
University. http://lib.stat.cmu.edu

10. Camacho, R.: Inducing Models of Human Control Skills. In: European Conference
on Machine Learning (ECML’98). (1998)

11. Chipman, H., George, E., McCulloch, R.: Bayesian Ensemble Learning. In: Ad-
vances in Neural Information Processing Systems 19. (2007) 265–272

