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Discovery of additive structure is an important step towards understanding a

complex multi-dimensional function, because it allows for expressing this function

as the sum of lower-dimensional or otherwise simpler components. Modeling ad-

ditive structure also opens up opportunities for learning better regression models.

The term statistical interaction is used to describe the presence of non-additive

effects among two or more variables in a function. When variables interact, their

effects must be modeled and interpreted simultaneously. Thus, detecting statistical

interactions can be critical for an understanding of processes by domain researchers.

This dissertation analyzes benefits of modelling additive structure for prediction

and interaction detection problems. It describes a new learning algorithm called

Groves, which is an ensemble of additive regression trees. Groves is based on such

existing techniques as bagging and additive models; their combination allows us to

use large trees in the ensemble and at the same time model additive structure of

the response function. Regression version of the algorithm, Additive Groves, and

its classification counterpart, Gradient Groves, yield consistently high performance

across a variety of problems, outperforming on average a large number of other

algorithms.

Additive nature of Groves makes it particularly useful for interaction detection.

This dissertation introduces a new approach to interaction detection: it is based



on comparing the performance of restricted and unrestricted predictive models.

Groves of trees allow variable interactions to be carefully controlled and therefore

are especially useful for this framework.

The details of proposed practical approach to interaction detection analysis are

demonstrated on real data describing the abundance of different species of birds

in the prairies east of the southern Rocky Mountains.
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CHAPTER 1

INTRODUCTION

1.1 Additive Structure

Regression data sets often describe the continuous response functions with high

precision and therefore this function can be quite complex. In most real world

functions it is possible to distinguish between two different components of com-

plexity: additivity and non-linear components. Many existing methods are good

at modelling one of these components or the other, but not both of them at the

same time. It turns out that both components are crucial and ignoring one of

them prohibits learning methods to model a complex response function properly.

Automatically detecting and modeling additive structure in otherwise non-linear

models can help to achieve a very good performance on regression data sets.

1.2 Statistical Interactions

Although achieving best possible performance is critical for many problems in

machine learning and data mining, it does not cover all possible goals of the data

analysis. Models that act only as black boxes — make good predictions, but do not

provide much insight into the decision making process — might be unsatisfactory

for domain scientists who also want to answer questions like: Which features are

important? What effects do they have on the response variable? Which features are

involved in complex effects and must be studied only together with other features?

How can we visualize and interpret such complex effects? Separate post-processing

techniques are needed to answer these questions.

The term statistical interaction is used to describe the presence of non-additive

effects among two or more variables in a function. Two variables are said to interact

1



in a function when the effect of one variable on the response depends on values

of the other variable. Precisely, variables xi and xj interact in F (x) when partial

derivative ∂F (x)
∂xi

depends on xj or, in a more general case, when the ”difference in

the value of F (x) for different values of xi depends on the value of xj” (Friedman

& Popescu [20]). This is equivalent to the following definition:

Function F (x), where x = (x1, x2, . . . , xn), shows no interaction between vari-

ables xi and xj if it can be expressed as the sum of two functions, f\j and f\i,

where f\j does not depend on xj and f\i does not depend on xi:

F (x) = f\j(x1, . . . , xj−1, xj+1, . . . , xn) + f\i(x1, . . . , xi−1, xi+1, . . . , xn) (1.1)

For example, F (x1, x2, x3) = sin(x1 + x2) + x1x3 has interactions between x1 and

x2 and also between x1 and x3, but no interaction between x2 and x3.

Higher-order interactions between a larger number of variables are defined sim-

ilarly. There is no K-way interaction between K variables in the function, if it can

be represented as a sum of K (or fewer) functions, each of which does not depend

on at least one variable in question. If such representation is not possible, we

say that there is a K-way interaction. Function xx2+x3

1 shows a 3-way interaction

between x1, x2 and x3, while x1x2 + x2x3 + x1x3 has all pairwise interactions, but

not a 3-way interaction.

It is important to stress that the concept of statistical interaction is completely

unrelated to the dependence and independence of variable distributions. Unfor-

tunately, there is some ambiguity about the use of the term in the literature.

Some authors use “interaction” to refer to different types of dependencies between

variables, e.g., correlation [29]. In this work we discuss statistical (non-additive)

interactions only.
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1.3 Practical Importance

Many scientific inquiries seek to identify what variables are important and to de-

scribe their effects. Discovery of additive structure is an important step towards

understanding a complex multi-dimensional function, because it allows for express-

ing this function as the sum of lower-dimensional components. When variables

interact, their effects cannot be decomposed into independent lower-dimensional

contributions and hence must be modeled simultaneously.

Interaction detection has significant practical importance because it provides

valuable knowledge about a domain. Some processes can only be described accu-

rately in terms of predictor interactions. For example, in drug design the syner-

gistic effect of antagonistic drug reactions is an interactive effect. Or consider the

problem of modeling bird migrations, the temporally coordinated movements of

individual birds across a landscape. Migrations are necessarily described in terms

of the simultaneous effects of both temporal and spatial predictors, a two-way in-

teraction. In ecology, interactions between multiple environmental stressors can

have serious impacts on species health. For example, it is known that decreasing

habitat patch size and acidification due to acid rain, each independently have ad-

verse affects on many bird species. Yet Hames et al. [24] found that the combined

effects of these two stressors on North American Wood Thrush populations were

significantly more severe than would be expected if each acted alone, so these two

factors must interact.

1.4 Objectives

The goals of this research are:

1. To develop learning methods capable of modeling complex functions that

3



contain both additive structure and highly non-linear components

2. To design model postprocessing techniques for direct analysis of inherent

additive structure in the data, i.e. detecting and measuring presence and

extent of statistical interactions

3. To perform detailed interaction detection analysis on large-scale noisy data

sets, identify potential problems that complicate information extraction from

such data and develop solutions that are applicable for real world tasks

4



CHAPTER 2

RELATED WORK

The focus of this thesis is centered around an algorithm based on combining

additive models with an ensemble of regression trees and its application to the

problem of interaction detection. Accordingly, this chapter reviews three related

research areas: ensembles, additive models and approaches to detection of statis-

tical interactions.

2.1 Ensembles

2.1.1 Non-Additive Ensembles

Ensembles are sets of models combined together to produce better results then a

single model would be able to do. First we are going to review ensembles that do

not try to capture additive structure of the response; they achieve improvement

in performance by decreasing variance, gradually expanding model or combining

models of different types.

Bagging

Bagging is a well-known procedure for improving model performance by reducing

variance [6]. On each iteration of bagging, we draw a bootstrap sample from

the training set, and train the full model from that sample. After repeating this

procedure a number of times, we end up with an ensemble of models. The final

prediction of the ensemble on each test data point is an average of the predictions

of all models. In recent work it has been shown that bagged trees are competitive

with the best available learning methods [13, 37]

5



Wagging

Wagging[5] is a variant of bagging, where differences in the training sets between

models are achieved not by drawing bootstrap samples, but by creating disturbance

in the response: small amount of gaussian noise is added to the data, different

values of noise create similar, but slightly different train sets. After that the

models are averaged the same way as in bagging.

Bayesian Averaging

Domingos [17] tried to improve bagging by replacing simple average with weighted

average, where weights were calculated as posterior probabilities of models given

the data. However, this method turned out to be very prone to overfitting and

therefore is interesting only from the theoretical point of view.

Random Forest

Random Forests [7] is another ensemble of trees that improves performance of single

models by creating many similar models and then averaging their predictions. It

randomizes its trees by limiting the number of attributes allowed to use in every

node. Each time when the tree-building algorithm wants to split the node, a

random set of input variables is chosen and the algorithm is able to choose only

one of those variables. The set is defined randomly and is different for different

nodes. It is worth noting, that although bagging and Random Forest end up with a

sum of models (trees) in the end, they cannot be considered additive models. Their

sums come from averaging similar models, each of which is trying to model original

data. When we talk about additive structure, we usually mean that different

models in the sum can differ from each other significantly, because they model

different additive components of the response.

6



Stacking

Stacking [49] is a technique to combine ready trained model into an ensemble by a

separate machine learning algorithm. Zenko et. al. use a meta decision tree [52] as

such learning algorithm: instead of providing ready prediction, leaves of the tree

show which base algorithm should be used on the current test point.

Now we are going to look at ”additive” ensembles, those that model additive

structure of the response function as a sum of their components.

2.1.2 Additive Ensembles

Gradient Boosting

Gradient boosting [28] is a general framework for several ensemble algorithms.

On the theoretical level the algorithms differ from each other by the loss function

that they are optimizing. The training process of each new model in the ensemble

depends on predictions of the models that are already in the ensemble: the joint

predictions of the ensemble are fit to the training set with respect to a given loss.

Here adding a new model to the ensemble corresponds to taking a gradient descent

step on the loss opitimization surface, hence the name of the algorithm.

As the ensemble keeps fitting the train set better and better, it inevitably

reaches the point where overfitting begins and the performance becomes worse. A

regularization parameter, a coefficient 0 < η < 1, controls how long it takes before

the model begins to overfit. An improved version of the algorithm, stochastic gra-

dient boosting [18], uses subsampling from the training set to minimize overfitting:

each new model is trained on a random subset of the training set.

We are especially interested in the case when loss is calculated as squared

error, because in this case the ensemble becomes additive and each new model

7



is trained on the residuals of all models currently present in the ensemble. In

this case gradient boosting acts as an infinite classical additive mode: new models

always get added into the ensembles, and old models stay there forever: none gets

discarded and replaced. An important fact to note is that such ”infinite additive

model” can work only when models are simple (e.g., small trees), because complex

models have more flexibility, can better and earlier fit the training set, and as a

result, overfit too fast.

Gradient boosting is a state of the art ensemble tree method for regression.

Chipman et al [14] recently performed an extensive comparison of several algo-

rithms on 42 data sets. In their experiments gradient boosting showed performance

similar to or better than Random Forests and a number of other types of models.

Bayesian Ensemble Learning

In Bayesian Ensemble Learning [14] a sum of trees is trained by a backfitting

algorithm driven by statistical model.

2.2 Additive Models

2.2.1 Classical Additive Models

A classical additive model is a sum of simpler models, where each simple model de-

pends only on one input variable. The prediction of an additive model is computed

as the sum of the predictions of these simpler models:

F (x) = F1(x1) + F2(x2) + · · · + FN(xN). (2.1)

Here each Fi(xi), 1 ≤ i ≤ N , is the prediction made by the i-th model. N is a

parameter, the number of simple models.
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Algorithm 1 Training additive models by backfitting

function Classical(N ,{x,y})
for i = 1 to N do

Model
(N)
i = 0

end for
Converge(N ,{x,y}, Model

(N)
1 , . . . ,Model

(N)
N )

end function

function Converge(N ,{x,y},Model
(N)
1 , . . . ,Model

(N)
N )

repeat
for i = 1 to N do

newTrainSet = {x, y −∑

k 6=i Model
(N)
k (x)}

Model
(N)
i = TrainModel(newTrainSet)

end for
until (change from the last iteration is small)

end function

In statistics, the basic mechanism for training an additive model with a fixed

number of components is the backfitting algorithm [25]. We will refer to this as the

Classical algorithm for training an additive model.

After initializing all components (simple models), the algorithm cycles through

them until the whole additive model converges to some stable state. The first

component is trained on the original data set, i.e., a set of training points {(x, y)}.

Let F̂1 denote the function encoded by this model. Then we train the second

component, which encodes F̂2, on the residuals, i.e., on the set {(x, y − F̂1(x))}.

The third component then is trained on the residuals of the first two, i.e., on

{(x, y − F̂1(x) − F̂2(x))}, and so on.

After we have trained N models this way, we discard the first component and

retrain it on the residuals of the other N − 1 components, i.e. on the set {(x, y −

F̂2(x) − F̂3(x) − · · · − F̂N(x))}. Then we similarly discard and retrain the second

model, and so on. We keep cycling through the components in this way until there

is no significant improvement in the RMSE on the training set.

Note that the algorithm does not use the fact that every component takes only

9



one input variable. We can still do the same type of backfitting for more complex

additive models, where each simple model can use all input variables.

F (x) = F1(x) + F2(x) + · · · + FN(x) (2.2)

2.2.2 Generalized Additive Models

Generalized additive models, introduced in 1990 by Hastie and Tibshirani [46],

allow to model response functions that depend on additive combination of single

effects of input variables when this dependency is represented by a non-linear

function.

G(F (x)) = F1(x) + F2(x) + · · · + FN(x) (2.3)

A useful type of generalized additive models is logistic regression: it allows

using additive models techniques on binary classification data.

ln(
F (x)

1 − F (x)
) = β0 + β1x1 + β2x2 + · · · + βNxN (2.4)

Friedman [19] and Collins et. al. [16] demonstrate how logistic regression

representation in form of generalized additive model helps to show that logistic

regression is actually related to boosting [45]

2.3 Interaction Detection Methods

2.3.1 Early Methods

Early methods for interaction detection were parametric and required explicit mod-

eling of interactions, most often as multiplicative terms. Only limited types of

interactions can be detected this way.
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Interaction detection is regularly performed as part of many statistical analyses

[15]. Most often parametric models are used where the analyst specifies the interac-

tion as a parametric term, or perhaps several terms. In this setting interaction de-

tection is simply a parameter estimation problem. More recently, techniques have

been developed to detect interactions within semi-parametric models [22, 50, 44].

Practically, these techniques work best for detection of low-order (currently 2 or 3

dimensional) interactions between specified groups of predictors.

More general approaches to interaction detection were recently introduced

[20][27]. These methods are based on building a model and detecting interactions

in the function learned by the model.

2.3.2 Partial Dependence Functions

Friedman and Popescu [20] developed tests for interaction detection for a very

general class of prediction models, including fully nonparametric models. Their

method makes use of the fact that in the absence of an interaction between xi and xj

the following holds: ∂F (x)2

∂xi∂xj
= ∂F (x)

∂xi
+ ∂F (x)

∂xj
. They estimate the partial dependence

functions[19] of the model and then estimate the strength of an interaction as the

difference between the right hand side and the left hand side of the equation above,

scaled by variance in the response.

The drawback of that method is that in order to get accurate estimates of

the partial dependence function, it relies on predictions for synthetic data points

in sparse regions of the input space. As a result, decisions about presence of

interactions can be made because of spurious interactions that happen only in

those regions[27]. To demonstrate this effect, we generated two simple data sets

for the function F (x) = x3
1+x3

2. In the first data set both x1 and x2 are distributed

uniformly between −10 and 10. For the second data set we took the same points

11



and removed those where both x1 and x2 were positive. Neither of the data sets

contains interactions, but the estimates produced by Friedman’s approach using

RuleFit[21] were 0.0243 for the first and 0.0824 for the second set. The presence

of an unpopulated region in the input data increased the estimated strength of the

presumed interaction by a factor of three.

In order to deal with this extrapolation problem, Friedman and Popescu [20]

suggest comparing the estimated interaction strength produced by the method de-

scribed above with a similar estimate on the same data, but for a different response

function that does not contain any interactions. They refer to the distribution of

the latter estimate as a null distribution. Points from the null distribution are

generated by means of a bootstrapping technique. Then the hypothesis that the

original estimate comes from the null distribution is tested. However, our experi-

ments with RuleFit revealed several examples of unsatisfactory performance of this

technique. For instance, we generated 5 data sets with response function x2
1 + x2

2

without noise and for each of them generated 50 samples from the null distribu-

tion. For 3 of those data sets RuleFit produced results that indicated presence

of an interaction, i.e., the original estimate was further from the mean of the null

distribution than 3 standard deviations.

A similar technique based on marginal integration, was also developed by Lin-

ton [33] for kernel methods.

2.3.3 ANOVA Decomposition

Hooker [27, 26] suggests another approach, based on estimating orthogonal com-

ponents of the ANOVA decomposition. This method has higher computational

complexity because it requires generating a full grid of data points with all possi-

ble combinations of values for those input variables that are tested for interaction.
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Similar to the Friedman and Popescu approach, this method can suffer from extrap-

olations over unpopulated regions of the input space. To overcome this problem,

as well as problems caused by correlations, Hooker suggests imposing low weights

for points from low-density regions. Unfortunately, this requires the use of density

estimation techniques and further increases complexity of the method.
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CHAPTER 3

ADDITIVE GROVES

This chapter presents a new regression algorithm called Additive Groves, an

ensemble of additive regression trees. We initialize a Grove with a single small

tree. The Grove is then gradually expanded: on every iteration either a new tree

is added, or the trees that already are in the Grove are made larger. This process is

designed to try to find the simplest model (a Grove with the fewest number of small

trees) that captures the underlying additive structure of the target function. As

training progesses, this algorithm yields a sequence of Groves of slowly increasing

complexity. Eventually, the largest Groves may begin to overfit the training set

even as they continue to learn important additive structure. This overfitting is

reduced by applying bagging on top of the Grove learning process.

3.1 Algorithm

Bagged Groves of Trees, or bagged Groves for short, is an ensemble of regression

trees. Specifically, it is a bagged additive model of regression trees where each

individual additive model is trained in an adaptive way by gradually increasing

both number of trees and their complexity.

3.1.1 Regression Trees

The unit model in a Grove is a regression tree. Algorithms for training regression

trees differ in two major aspects:

1. the criterion for choosing the best split in a node and

2. the way in which tree complexity is controlled.
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We use trees that optimize RMSE (root mean squared error) and we control tree

complexity (size) by imposing a limit on the size (number of cases) at an internal

node. If the fraction of the data points that reach a node is less than a specified

threshold α, then the node is declared a leaf and is not split further. Hence the

smaller α, 0 ≤ α ≤ 1, the larger the tree. (See Figure 3.2.)

Note that because we will later bag the tree models, the specific choice of

regression tree is not particularly important. The main requirement is that the

complexity of the tree should be controllable.

3.1.2 Additive Models — Classical Algorithm

A Grove of trees is an additive model where each additive term is represented

by a regression tree. The prediction of a Grove is computed as the sum of the

predictions of these trees: F (x) = T1(x) + T2(x) + · · · + TN(x). Here each Ti(x),

1 ≤ i ≤ N , is the prediction made by the i-th tree in the Grove. The Grove model

has two main parameters: N , the number of trees in the Grove, and α, which

controls the size of each individual tree. We use the same value of α for all trees

in a Grove.

Algorithm 2 shows training of a single Grove by backfitting algorithm described

in Section 2.2.1.

Bagging

As with single decision trees, a single Grove tends to overfit to the training set

when the trees are large. Such models show a large variance with respect to

specific subsamples of the training data and benefit significantly from bagging, a

well-known procedure for improving model performance by reducing variance[6].

On each iteration of bagging, we draw a bootstrap sample (bag) from the training
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Algorithm 2 Classical additive model training

function Classical(α,N ,{x,y})
for i = 1 to N do

Tree
(α,N)
i = 0

end for
Converge(α,N ,{x,y}, Tree

(α,N)
1 , . . . , Tree

(α,N)
N )

end function

function Converge(α,N ,{x,y},Tree
(α,N)
1 , . . . , Tree

(α,N)
N )

repeat
for i = 1 to N do

newTrainSet = {x, y −∑

k 6=i Tree
(α,N)
k (x)}

Tree
(α,N)
i = TrainTree(α, newTrainSet)

end for
until (change from the last iteration is small)

end function

set, and train the full model (in our case a Grove of additive trees) from that

sample. After repeating this procedure a number of times, we end up with an

ensemble of models. The final prediction of the ensemble on each test data point

is an average of the predictions of all models.

Example

In this section we illustrate the effects of different methods of training bagged

Groves on synthetic data. The synthetic data set was generated by a function of

10 variables that was previously used by Hooker[26].

F (x) = πx1x2

√
2x3 − sin−1(x4) + log(x3 + x5) −

x9

x10

√

x7

x8

− x2x7 (3.1)

Variables x1, x2, x3, x6, x7, x9 are uniformly distributed between 0.0 and 1.0 and

variables x4, x5, x8 and x10 are uniformly distributed between 0.6 and 1.0. Ranges

are selected to avoid extremely large or small function values.

Figure 3.1 shows a contour plot of how model performance depends on both

α, the size of tree, and N , the number of trees in a Grove, for 100 bagged Groves
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trained with the classical method on 1000 training points from the above data set.

The performance is measured as RMSE on an independent test set consisting of

25,000 points. Notice that lower RMSE implies better performance. The bottom-

most horizontal line for N = 1 corresponds to bagging single trees. The plot clearly

indicates that by introducing additive model structure, with N > 1, performance

improves significantly. We can also see that the best performance is achieved

by Groves containing 5-10 relatively small trees (large α), while for larger trees

performance deteriorates.

3.1.3 Layered Training

When individual trees in a Grove are large and complex, the Classical additive

model training algorithm (Section 3.1.2) can overfit even if bagging is applied.

The first several trees might already perfectly model the training data, hence the

remaining trees in the Grove are superfluous. (All residuals at this point are zero.)

Consider the extreme case α = 0, i.e., a Grove of full trees. The first tree will

perfectly model the training data, leaving residuals with value 0 for the other trees

in the Grove. Hence the intended Grove of several large trees will degenerate to a

single tree.

One could address this issue by limiting trees to very small size. However, we

still would like to be able to use large trees in a Grove so that we can capture

complex and non-linear functions. To prevent the degeneration of the Grove as

the trees become larger, we developed a “layered” training approach. In the first

round we grow N small trees. Then in later cycles of discarding and re-training

the trees in the Grove we gradually increase tree size.

More precisely, no matter what the value of α, we always start the training

process with small trees, typically using a start value α0 = 0.5. Let αj denote the
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Algorithm 3 Layered training

function Layered(α,N ,train)
α0 = 0.5, α1 = 0.2, α2 = 0.1, . . . , αmax = α
for j = 0 to max do

if j = 0 then
for i = 1 to N do

Tree
(α0,N)
i = 0

end for
else

for i = 1 to N do
Tree

(αj ,N)
i = Tree

(αj−1,N)
i

end for
end if
Converge(αj,N ,train,Tree

(αj ,N)
1 , . . . , Tree

(αj ,N)
N )

end for
end function

value of the size parameter after j iterations of the Layered algorithm (Algorithm

3). After reaching convergence for αj−1, we increase tree complexity by setting αj

to approximately half the value of αj−1. We continue to cycle through the trees,

re-training all trees in the Grove in the usual way, but now allow them to reach

the size correspondent to the new larger αj, and as before, we proceed until the

Grove converges on this layer. We keep gradually increasing tree size until αj ≈ α.

For a training set with 1000 data points and α = 0, we use the following se-

quence of values of αj: (0.5, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005, 0.002, 0.001). It is worth

noting that while training a Grove of large trees, we automatically obtain all Groves

with the same N for all smaller tree sizes in the sequence. Figure 3.2 shows how 100

bagged Groves trained by the layered approach perform on the synthetic data set.

Overall performance is much better than for the classical algorithm and bagged

Groves of N large trees now perform at least as well as bagged Groves of N smaller

trees.
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3.1.4 Dynamic Programming Training

Layered training helps prevent overfitting when the trees are large, but the al-

gorithm explores the (α,N) parameter space in a fairly restricted manner. To

construct an (α,N) Grove, it goes through a series of Groves with the same N .

Intuitively, considering a grid of (α,N) parameter values like in Figure 3.2, the

Layered algorithm proceeds left-to-right along the horizontal grid lines, generating

the Grove model for a grid point from its left neighbor.

There is no reason to believe that the best (α,N) Grove should always be

constructed from a (≈ 2α,N) Grove. In fact, a large number of small trees might

overfit the training data and hence limit the benefit of increasing tree size in later

iterations. To avoid this problem, we need to give the Grove training algorithm

additional flexibility in choosing the right balance between increasing tree size and

the number of trees. This is the motivation behind the Dynamic Programming

Grove training algorithm.

This algorithm can choose to construct a new Grove from an existing one by

either adding a new tree (while keeping tree size constant) or by increasing tree

size (while keeping the number of trees constant). Considering the parameter grid,

the Grove for a grid point (αj, n) could be constructed either from its left neighbor

(αj−1, n) or from its lower neighbor (αj, n − 1). Pseudo-code for this approach is

shown in Algorithm 4. We make a choice between the two options for computing

each Grove (adding another tree or making the trees larger) in a greedy manner,

i.e., the one that results in better performance of the Grove on the validation set.

Clearly, for the algorithm to construct an (α,N) Grove this way, it has to generate

the whole “grid” of Groves with smaller trees (i.e., larger α) and less than N trees.

As the final ensemble will be Bagged Groves, each Grove is trained on a bootstrap

sample of the data and hence there will be some data points from the training set
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that were not used in the current bag. We use the out-of-bag data points[9] as the

validation set for choosing which of the two Groves to use at each step.

Figure 3.3 shows how the Dynamic Programming approach improves bagged

Groves over the layered training. Figure 3.4 shows the choices that are made during

the process: it plots the average difference between RMSE of the Grove created

from the lower neighbor (increase n) and performance of the Grove created from

the left neighbor (decrease αj). That is, a negative value means that the former

is preferred, while a positive value means that the latter is preferred at that grid

point. We can see that for this data set increasing the tree size is the preferred

direction, except for cases with many small trees.

This dynamic programming version of the algorithm does not explore all pos-

sible sequences of steps to build a Grove of trees, because we require that every

grove built in the process should contain trees of equal size. We have tested sev-

eral other possible approaches that don’t have this restriction, but they failed to

produce any improvements and were noticeably worse from the running time point

of view. For these reasons we prefer the dynamic programming version over other,

less restricted options.

3.1.5 Randomized Dynamic Programming Training

Our bagged Grove training algorithms so far performed bagging in the usual way,

i.e., create a bag of data, train all Groves for different vallues of (α,N) on that bag,

then create the next bag, generate all models on this bag; and so on for 100 different

bags. When the Dynamic Programming algorithm generates a Grove using the

same bag, i.e., the same train set that was used to generate its left and lower

neighbors, complex models might not be very different from their neighbors because

those neighbors already might have overfitted and there is not enough training data
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Algorithm 4 Dynamic Programming Training

function DP(α,N ,trainSet)
α0 = 0.5, α1 = 0.2, α2 = 0.1, . . . , αmax = α
for j = 0 to max do

for n = 1 to N do

for i = 1 to n − 1 do
Treeattempt1,i = Tree

(αj ,n−1)
i

end for
Treeattempt1,n = 0
Converge(αj,n,train,Treeattempt1,1, . . . , Treeattempt1,n)

if j > 0 then
for i = 1 to n do

Treeattempt2,i = Tree
(αj−1,n)
i

end for
Converge(αj,n,train,Treeattempt2,1, . . . , Treeattempt2,n)

end if

winner = Compare
∑

i Treeattempt1,i and
∑

i Treeattempt2,i on validation set
for i = 1 to n do

Tree
(αj ,n)
i = Treewinner,i

end for
end for

end for
end function

to learn anything new. We can address this problem by using a different bag of data

on every step of the Dynamic Programming algorithm, so that every Grove has

some new data to learn from. While performance of a single Grove might become

worse, performance of bagged Groves improves due to increased variability in the

models. Figure 3.5 shows the improved performance of this final version of our

Grove training approach. The most complex Groves are now performing worse than

their left neighbors with smaller trees. This happens because those models need

more bagging steps to converge to their best quality. Figure 3.6 shows the same

plot for bagging with 500 iterations where the property “more complex models are

at least as good as their less complex counterparts” is restored.
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Table 3.1: Performance of bagged Groves (Randomized Dynamic Programming
training) compared to boosting and bagging. RMSE on the test set averaged over
10 runs.

California Elevators Kinematics Computer Stock Synthetic Synthetic

Housing Activity No Noise Noise

Bagged Groves

RMSE 0.38 0.309 0.364 0.117 0.097 0.087 0.483

StdDev 0.015 0.028 0.013 0.0093 0.029 0.0065 0.012

Boosting

RMSE 0.403 0.327 0.457 0.121 0.118 0.148 0.495

StdDev 0.014 0.035 0.012 0.01 0.05 0.0072 0.01

Bagged trees

RMSE 0.422 0.44 0.533 0.136 0.123 0.276 0.514

StdDev 0.013 0.066 0.016 0.012 0.064 0.0059 0.011

3.2 Experiments

We evaluated Additive Groves on 2 synthetic and 5 real-world data sets and com-

pared the performance to two other regression tree ensemble methods that are

known to perform well: stochastic gradient boosting and bagged regression trees.

Bagged Groves consistently outperform both of them. For real data sets we per-

formed 10 fold cross validation: for each run 8 folds were used as a training set,

1 fold as a validation set for choosing the best set of parameters and the last fold

was used as the test set for measuring performance. For the two synthetic data

sets we generated 30 blocks of data containing 1000 points each and performed 10

runs using different blocks for training, validation and test sets. We report mean

and standard deviation of the RMSE on the test set. Table 3.1 shows the results;

for comparability across data sets all numbers are scaled by the standard deviation

of the response in the dataset itself.
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3.2.1 Parameter Settings

Groves

We trained 100 bagged Groves using the Randomized Dynamic Programming

technique for all combinations of parameters N and α with 1 ≤ N ≤ 15 and

α ∈ {0.5, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005}. Notice that with these settings the re-

sulting ensemble can consist of at most 1500 trees. From these models we selected

the one that gave the best results on the validation set. The performance of the

selected Grove on the test set is reported.

Stochastic Gradient Boosting

The obvious main competitor to bagged Groves is gradient boosting [28][18], a

different ensemble of trees also based on additive models. There are two major

differences between boosting and Groves. First, boosting never discards trees,

i.e., every generated tree stays in the model. Grove iteratively retrains its trees.

Second, all trees in a boosting ensemble are always built to a fixed size, while

groves of large trees are trained first using groves of smaller trees. We believe that

these differences allow Groves to better capture the natural additive structure of

the response function.

The general gradient boosting framework supports optimizing for a variety of

loss functions. We selected squared-error loss because this is the loss function that

our current version of the Groves algorithm optimizes for. However, like gradient

boosting, Groves can be modified to optimize for other loss functions.

Friedman[18] recommends boosting small trees with at most 4–10 leaf nodes

for best results. However, we discovered for one of our datasets that using larger

trees with gradient boosting did significantly better. This is not surprising since

some real datasets contain complex interactions, which cannot be accurately mod-
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eled by small trees. For fairness we therefore also include larger boosted trees

in the comparison than Friedman suggested. More precisely, we tried all α ∈

{1, 0.5, 0.2, 0.1, 0.05}. Table 3.2 shows the typical correspondence between α and

number of leaf nodes in a tree, which was very similar across the data sets. Pre-

liminary results did not show any improvement for tree size beyond α = 0.05.

Table 3.2: Typical number of leaf nodes for different values of α
α # leaf nodes

1 2 (stump)

0.5 3

0.2 8

0.1 17

0.05 38

0.02 100

0.01 225

0.005 500

0 full tree

Stochastic gradient boosting deals with overfitting by means of two techniques:

regularization and subsampling. Both techniques depend on user-set parameters.

Based on recommendations in the literature and on our own evaluation we used

the following values for the final evaluation: 0.1 and 0.05 for the regularization

coefficient and 0.4, 0.6, and 0.8 as the fraction of the subsampling set size from the

whole training set. Boosting can also overfit if it is run for too many iterations. We

tried up to 1500 iterations to make the maximum number of trees in the ensemble

equal for all methods in comparison. The actual number of iterations that performs

best was determined based on the validation set, and therefore can be lower than

1500 for the best boosted model.

In summary, to evaluate stochastic gradient boosting, we tried all combina-

tions of the values described above for the 4 parameters: size of trees, number

of iterations, regularization coefficient, and subsampling size. As for Groves, we

determine the best combination of values for these parameters based on a separate

validation set.
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Bagging

Bagging single trees is known to provide good performance by significantly decreas-

ing variance of the individual tree models. However, compared with Groves and

boosting, which are both based on additive models, bagged trees do not explicitly

model the additive structure of the response function. Increasing the number of it-

erations in bagging does not result in overfitting and bagging of larger trees usually

produces better models than bagging smaller trees. Hence we omitted parameter

tuning for bagging. Instead we simply report results for a model consisting of 1500

bagged full trees. This number of iterations was more than enough to achieve the

best performance for bagging.

3.2.2 Datasets

Synthetic Data without Noise

This is the same data set that we used as a running example in the earlier sections.

The response function is generated by Equation 3.1. The function contains 6

additive components, some of them non-linear. The performance of bagged Groves

on this dataset is much better than the performance of other methods.

Synthetic Data with Noise

This is the same synthetic dataset, only this time Gaussian noise is added to the

response function. The standard deviation σ of the noise distribution is chosen

as 1/2 of the standard deviation of the response in the original data set. Bagged

Groves still perform clearly better, but the difference is smaller.

We have used 5 regression data sets from the collection of Lúıs Torgo [47] for

the next set of experiments.
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Kinematics

The Kinematics family of datasets originates from the Delve repository [42] and

describes a simulation of robot arm movement. We used a kin8nm version of the

dataset: 8192 cases, 8 continuous attributes, high level of non-linearity, low level

of noise. Groves show 20% improvement over gradient boosting on this dataset.

It is worth noticing that boosting preferred large trees on this dataset; trees with

α = 0.05 showed clear advantage over smaller trees. However, there was no further

improvement for boosting even larger trees. We attribute these effects to high

non-linearity of the data.

Computer Activity

Another dataset from the Delve repository, describes the state of multiuser com-

puter systems. 8192 cases, 22 continuous attributes. The variance of performance

for all algorithms is low. Groves show (3%) improvement compared to boosting.

California Housing

This is a dataset from the StatLib repository[35] and it describes housing prices

in California from the 1990 Census: 20, 640 observations, 9 continuous attributes.

Groves show 6% improvement compared to boosting.

Stock

This is a relatively small (960 data points) regression dataset from the StatLib

repository. It describes daily stock prices for 10 aerospace companies: the task is

to predict the first one from the other 9. Prediction quality from all methods is

very high, so we can assume that the level of noise is small. This is another case

when Groves give significant improvement (18%) over gradient boosting.
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Elevators

This data set is obtained from the task of controlling an aircraft [10]. It seems to be

noisy, because the variance of performance is high although the data set is rather

large: 16, 559 cases with 18 continuous attributes. Here we see a 6% improvement.

3.2.3 Discussion

Based on the empirical results we conjecture that Bagged Groves outperform the

other algorithms most when the datasets are highly non-linear and not very noisy.

(Noise can obscure some of the non-linearity in the response function, making the

best models that can be learned from the data more linear than they would have

been for models trained on the response without noise.) This can be explained

as follows. Groves can capture additive structure yet at the same time use large

trees. Large trees capture non-linearity and complex interactions well, and this

gives Groves an advantage over gradient boosting which relies mostly on additivity.

Gradient boosting usually works best with small trees, and fails to make effective

use of large trees. At the same time most data sets, even non-linear ones, still have

significant additive structure. The ability to detect and model this additivity gives

Groves an advantage over bagging, which is effective with large trees, but does not

explicitly model additive structure.

Gradient boosting is a state of the art ensemble tree method for regression.

Chipman et al[14] recently performed an extensive comparison of several algorithms

on 42 data sets. In their experiments gradient boosting showed performance similar

to or better than Random Forests and a number of other types of models. Our

algorithm shows performance consistently better than gradient boosting and for

this reason we do not expect that Random Forests or other methods that are not

superior to gradient boosting would outperform our bagged Groves.
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In terms of computational cost, bagged Groves and boosting are comparable.

In both cases a large number of tree models has to be trained (more for Groves)

and there is a variety of parameter combinations that need to be examined (more

for boosting).

From the point of view of computational cost, a single ensemble of Groves will

take significantly longer to train than boosting. The reason is that Groves need to

generate many temporary trees that will not end up in the ensemble, while boosting

generates each tree in the ensemble only once. On the other hand boosting has a

larger parameter space to explore, and therefore we need to run it many times to

find the right combination of parameters. Overall it depends on the specific dataset

which of the two algorithms will be computationally cheaper. In our evaluation

setting boosting and groves had comparable computational cost.
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CHAPTER 4

GRADIENT GROVES

Gradient Groves is a classification version of Additive Groves. It adapts ideas

from Gradient boosting framework to extend the original regression algorithm to

any given loss, in particular logistic regression log-likelihood loss.

Both gradient boosting and Additive Groves are powerful ensemble methods

that are based on additive models. However, they each have different strengths and

weaknesses. Gradient boosting is built on a theoretically well-developed framework

that allows for optimization for different losses and different problems, including

classification. In contrast, the original Additive Groves are limited to squared

loss and regression. However, Additive Groves can train ensembles of large trees

without overfitting and because of this often outperform gradient boosting on

highly non-linear regression data sets that cannot be fit adequately with small

trees.

In this chapter we show how the approach of gradient descent in function space

can be transferred from gradient boosting’s infinite stagewise forward training

to Groves’ bagged additive models trained by backfitting. Intuitively, we take

the internal procedure of building each new tree on pseudo-residuals of gradient

descent steps from gradient boosting and combine it with the external loop that

controls the size and numer of trees from Additive Groves. This way we are able

to combine the strengths of both methods and produce a powerful ensemble of

large trees that optimizes to a given loss function. In this paper our goal is to

develop a new ensemble method for binary classification, therefore we concentrate

on combining Groves with L2 TreeBoost. Because L2 TreeBoost implicitly assumes

small trees that will never exactly predict class +1 or class −1, there was difficulty

extending it to deal with large trees. We developed a number of improvements
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for this specific type of Gradient Groves. We will often refer to Gradient Groves

optimizing binomial log-likelihood as just Gradient Groves.

Boosting algorithms often benefit from calibration: postprocessing that cor-

rects predictions of binary classification models towards actual probabilities[36].

We analyze how calibration affects Gradient Groves and conclude that with the

right choice of parameters, Gradient Groves are well calibrated already out-of-the-

box. If the parameter choice is suboptimal, however, calibration will improve the

probabilities.

We compare our new algorithm with other methods that were studied in a

recent empirical comparison[13] of classification algorithms. Our results show that

on average Gradient Groves outperforms all other learning methods from that

study.

4.1 Background: Gradient Boosting

A short overview of Gradient Boosting was already given in Section 2.1.2; here we

describe this algorithm in more details, because some of its ideas will be reused for

Gradient Groves.

Gradient boosting was introduced in [28] as a general ensemble framework.

Here we describe the version where the models used in the ensemble are small re-

gression trees. Gradient boosting is a stagewise strictly-forward algorithm. Models

that are already in the ensemble stay there, are not changed later, and there-

fore do not depend on models that will be built later. The goal is to minimize

∑

i L(yi, F (xi)), where {x, y} is the training set, L(y, F ) is a loss function and

F (x) is our approximation of the response. On every iteration we represent F as

the sum of all trees built so far:

Fm(x) = Fm−1(x) + Treem(x). (4.1)
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Training new models is viewed as iterations of gradient descent in function space:

Each model is a step in the direction of the gradient ∂L(yi,F (xi))
∂F (xi)

. This is achieved

by training the tree on the “pseudo-residuals” — values of the gradient on the

training set points:

ỹi = −
[

∂L(yi, F (xi))

∂F (xi)

]

F (x)=Fm−1(x)

(4.2)

After we have found the direction of the m-th step, we need to find the best point

(function) in that direction. In the space of functions represented by trees this

corresponds to choosing the optimal prediction γjm in each leaf Rjm of the tree.

In order to do this we need to solve the equation:

γjm = argminγ

∑

xi∈Rjm

L(yi, Fm−1(xi) + γ) (4.3)

Algorithm 5 summarizes the technique.

This is a compressed description of gradient boosting. For a more detailed

explanation see[28]. One important detail to note: regardless of the loss function,

the trees fitting the gradient on pseudo-residuals are regression trees trained to

minimize mean squared error. However, the way to calculate γjm (the actual

prediction of a single leaf) from the pseudo-residuals of data points in the leaf

depends on the loss that the algorithm is trained to optimize.

Algorithm 5 Gradient Boosting Framework (with trees)

for m = 1 to M do
ỹi = −[∂L(yi,F (xi))

∂F (xi)
]F (x)=Fm−1(x)

Treem = TrainTree(xi, ỹi)
for ∀Rjm ∈ Treem do

γjm = argminγ

∑

xi∈Rjm
L(yi, Fm−1(xi) + γ)

end for
Fm(x) = Fm−1(x) + Treem(x)

end for
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4.1.1 L2 TreeBoost

Now we describe the algorithm from the gradient boosting family intended for

binary classification. L2 TreeBoost optimizes a loss used in logistic regression —

negative binomial log-likelihood.

L(y, F (x)) = log(1 + exp(−2yF (x))), y ∈ {−1, 1}, (4.4)

where

F (x) =
1

2
log

[

Pr(y = 1|x)

Pr(y = −1|x)

]

. (4.5)

Note that here, as in logistic regression, the additive model will predict log

odds instead of the probabilities themselves. To convert F (x) to probabilities we

will need to make the following transformation:

Pr(y = 1|x) = 1/(1 + e−2F (x)). (4.6)

After substituting an abstract loss function with negative binomial loglikelihood

loss Equation 4.2 becomes

ỹi = 2yi/(1 + exp(2yiFm−1(xi))) (4.7)

and Equation 4.3 that calculates the prediction in a single leaf becomes

γjm = argminγ

∑

xi∈Rjm

log(1 + exp(−2yi(Fm−1(xi) + γ))). (4.8)

This equation does not have an exact solution and is further approximated by a

single Newton-Raphson step.

γjm =
∑

xi∈Rjm

ỹi/
∑

xi∈Rjm

|ỹi|(2 − |ỹi|) (4.9)

Modeling log odds function in L2 TreeBoost is summarized in Algorithm 6.
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Algorithm 6 L2 TreeBoost

for m = 1 to M do
ỹi = 2yi/(1 + exp(2yiFm−1(xi)))
Treem = TrainTree(xi, ỹi)
for ∀Rjm ∈ Treem do

γjm =
∑

xi∈Rjm
ỹi/

∑

xi∈Rjm
|ỹi|(2 − |ỹi|)

end for
Fm(x) = Fm−1(x) + Treem(x)

end for

4.2 Algorithm

Gradient boosting and Groves share one important aspect of training. Each tree

is built on the modification of the original training set where the values of input

variables are retained, but the response is modified using the predictions of all trees

currently in the ensemble. Additive Groves uses residuals, gradient boosting uses

pseudo-residuals calculated from the gradient. This similarity is what allows us to

combine the two algorithms. We will use backfitting and the gradual increase of

tree size and number of trees from Groves and we will borrow training by gradient

descent steps from gradient boosting. When we switch from stagewise forward

training to backfitting, we lose the intuitive explanation of approximating the loss

by an infinite number of gradient descent steps. However, we can explain the new

algorithm as an attempt to choose the best directions for a fixed number of steps:

after we have chosen the later steps, we always have the option to revisit and

improve the first ones.

Notice that in case of least squares loss the resulting algorithm will be identical

to the original regression Groves. In this paper we focus on creating a new classifi-

cation algorithm, so we give detailed consideration to Gradient Groves trained to

optimize the logistic regression loss. In other words, we focus on Groves combined

with L2 TreeBoost. Algorithm 7 shows backfitting merged with L2 TreeBoost.

Gradient Groves uses this algorithm instead of pure backfitting and retains the
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outer loop that changes the numbers of trees and their size from original Additive

Groves.

Algorithm 7 Backfitting optimizing logistic regression loss (before modifications

function Backfitting(M ,TrainSet{x,y})

for m = 1 to M do
Treem = 0

end for

repeat
for m = 1 to M do

Discard(Treej)
ỹi = 2yi/(1 + exp(2yi

∑

k 6=m Treek(xi)))
Treem = TrainTree(xi, ỹi)
for ∀Rjm ∈ Treem do

γjm =
∑

xi∈Rjm
ỹi/

∑

xi∈Rjm
|ỹi|(2 − |ỹi|)

end for
end for

until (change from the last iteration is small)

end function

Several issues emerge when we try to combine these algorithms directly. To

address them, we need to introduce several changes into the algorithm.

4.2.1 Fitting Large Trees

One of the core differences between Groves and boosting is the way how Groves deal

with overfitting. Boosting prevents its model from overfitting by using small size of

trees, shrinkage, early stopping or other regularization techniques[28]. In Groves,

single models are allowed and even encouraged to overfit: more complex models

can learn more detailed information, and excessive variance is later removed by

bagging. This allows Groves to use large trees and model more complex structure.

We want to retain this property of Groves, so we want to be able to allow large
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trees that can fit the training data as closely as possible. Such trees are likely

to contain pure leaves that have only positive or negative training data points.

Recall that we train the trees to predict log odds of probabilities, therefore, in a

pure node where the data is fit perfectly, we would expect to get the prediction

γ = ±inf . It turns out this is not the case with L2 TreeBoost. In particular: a

pure node means that either all yi = 1 or all yi = −1. For simplicity assume that

this is the first iteration (m = 1) and that F0(x) was initialized with zero. Now

from Equations 4.7 and 4.9 it follows that γ = ±1: this is very different from the

infinity we were supposed to predict in the pure leaf.

We can see that the original L2 TreeBoost algorithm fails to produce correct

predictions in pure leaves. It happens because it approximates the solution of

Equation 4.8 by using the Newton-Raphson method. The problem is that Newton-

Raphson searches for a local minimum – it actually searches for the point where

the gradient is zero – and therefore will not necessary produce the correct solution

when the minimum is achieved at ± inf. This is exactly what happens when the

node is pure, so the Newton-Raphson approximation cannot be used in this case.

This issue was not important for gradient boosting because it uses small trees and

small trees almost never have pure leaves. However, in order to use Groves with

large trees we need to be able to deal with this special case.

Modification 1. If all cases in a node belong to the positive (negative) class,

simply predict + inf (− inf) for log odds instead of using the Newton-Raphson step.

Of course, predicting infinity might produce other problems. We will discuss

these in the next paragraph. Here we want to stress only that the predictions for

pure nodes produced by the original algorithm are erroneous and do not fit the

intended gradient descent framework. Modification 1 is introduced to fix this issue

and to replace incorrect approximation results with exact solutions in special cases.
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4.2.2 Constraining the Variance

Bagging is an effective technique for reducing variance, but it has limitations.

When the variance of the models becomes too high, bagging fails to eliminate

it completely. One reason is that different versions of the training set are drawn

from the same data again and again, making the training sets and the models built

from them correlated. A second reason is that even if bagging would eventually

succeed, for models with very high variance the number of iterations required can

be impractically large.

Variance in predicting log odds of probabilities indeed becomes too high. Re-

member that log odds of probabilities 0 and 1 are equal to +inf and −inf , there-

fore, predictions of the models can be arbitrarily large. One source of extremely

large values is Modification 1. And even without that modification, Equation 4.9

can still produce extremely large values of γjm, prediction in a single leaf, if the

values of residuals ỹi are close to 2 or 0.

A simple, and effective solution to the problem of excessively high variance is

to set thresholds on predictions of each single leaf.

Modification 2. If a leaf predicts a value larger than a threshold Γ (smaller

than −Γ), replace its prediction with Γ (−Γ).

Choice of Γ significantly influences the performance of Gradient Groves. Values

that are too small decrease the performance, because they push predicted proba-

bilities too far from 0 and 1 towards 0.5, while values that are too large will not

be able to sufficiently restrict variance.

Remember that training a single grove begins with training one tree and then

the number of trees is gradually increased. If we fix Γ as a maximum prediction of

a single tree, then maximum prediction of the whole grove will be also gradually

increased during training. To avoid this scenario and to make the threshold affect
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groves of different size the same way, we need to set the threshold not as a maximum

value for a single leaf, but as a maximum value for the prediction of the whole grove,

which is the sum of M trees.

Modification 2a. If a leaf predicts a value greater than a threshold Γ
M

(less

than − Γ
M

), replace its prediction with Γ
M

(− Γ
M

). Empirically deduced good values

for Γ depend on the data set but usually are in the range between 1 and 20.

4.2.3 External vs. Internal Bagging

The normal sequence of steps during bagging is as follows:

1. Build models

2. Calculate predictions from models

3. Average predictions

If we follow this sequence with Gradient Groves in order to predict probabilities,

the algorithm will look like this:

1. Build models (each of them predicts log odds)

2. Calculate predictions from models

• predict log odds

• convert to predictions of probabilities

3. Average predictions of probabilities

This algorithm does not work as one would want. Our models have variance and

we want to eliminate it by averaging their predictions. However, if we follow

the above sequence of steps, we have to apply a non-linear transformation to

predictions before averaging. Some of variance that was originally present in the
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predictions becomes bias during this procedure and can’t be further removed by

averaging. To prevent this, we need to average predictions before we convert them

to probabilities.

Modification 3. Bagging should be done internally relative to transformation

of log odds.

1. Build models

2. Calculate predictions from models (log odds)

3. Average predictions from the different log-odds models

4. Convert averaged predictions of log odds to probabilities.

4.3 Calibration

Calibration is a postprocessing technique that scales model predictions so that they

better fit class probabilities. We experimented with two different calibration meth-

ods: Platt scaling [40], and Isotonic regression [51] using the pair adjacent violators

(PAV) algorithm [4]. Platt’s method fits a sigmoid to the predictions, and then

uses this sigmoid to correct for distortion in the predictions. Isotonic regression is

a more powerful method than Platt Scaling which can fit any monotonic function

(of which the sigmoid is a special case) to the data. Although Isotonic Regression

is more flexible, typically more data is required to fit the isotonic function without

overfitting; Platt’s method is more reliable when data is limited.

From our experiments we observed that Gradient Groves are already well cal-

ibrated and post-training calibration with either method does not significantly

improve performance when the Γ threshold is chosen properly. However, perfor-

mance can be significantly improved by calibration when Γ is too small and hence
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probabilities are pushed too much towards 0.5. In that case calibration will auto-

matically push the minimum predicted probabilities back to 0 and the maximum

predicted probabilities back to 1.

4.4 Empirical Evaluation

In order to guarantee a reliable comparison of Gradient Groves with other classifica-

tion algorithms, we made use of a recent empirical evaluation of ten machine learn-

ing algorithms. [13] evaluated boosted trees (BST-DT), bagged trees (BAG-DT),

Random Forests (RF), support vector machines (SVM), neural networks (ANN),

nearest neighbor (KNN), boosted stumps (BST-STM), decision trees (DT), logistic

regression (LR) and naive Bayes (NB) across 11 binary data sets and 8 performance

metrics. We evaluated Gradient Groves using the same data, folds, and metrics so

that our results are directly comparable to theirs.

4.4.1 Experiment Settings

We have performed 5-fold cross-validation using exactly the same splits into train-

ing, test and validation sets as in [13]. On the training set we trained 440 Gradient

Groves with different combinations of parameters α (controls size of tree), M (num-

ber of trees in each grove), and Γ (threshold discussed in Section 4.2). α is the

maximum size of a leaf node: if the proportion of training set items in the node

becomes less than or equal to α during training, such a node becomes a leaf. In

our experiments we tried all possible combinations of the following values: α ∈

{0.5, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005, 0.002, 0.001, 0.0005, 0}, 1 ≤ M ≤ 10, Γ ∈ {1,

2, 5, 10}. For each combination of parameters we used 100 iterations of bagging.

The metrics used in the evaluation are:
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Table 4.1: Empirical comparison of Gradient Groves with 10 other algorithms.
Scaled performance measures are averaged over 11 datasets

C ACC FSC LFT ROC APR BEP RMS MXE mean

GRGRV N .868 .835 .945 .972 .955 .941 .886 .904 .913

GRGRV Y .864 .815 .943 .971 .955 .941 .859 .863 .901

BSTDT Y .843 .779 .939 .963 .938 .929 .880 .896 .896

RF Y .872 .805 .934 .957 .931 .930 .851 .858 .892

BAGDT N .846 .781 .938 .962 .937 .918 .845 .872 .887

RF N .872 .790 .934 .957 .931 .930 .829 .830 .884

BAGDT Y .841 .774 .938 .962 .937 .918 .836 .852 .882

SVM Y .824 .760 .895 .938 .898 .913 .831 .836 .862

ANN N .803 .762 .910 .936 .892 .899 .811 .821 .854

ANN Y .815 .748 .910 .936 .892 .899 .783 .785 .846

BSTDT N .834 .816 .939 .963 .938 .929 .598 .605 .828

KNN Y .757 .707 .889 .918 .872 .872 .742 .764 .815

KNN N .756 .728 .889 .918 .872 .872 .729 .718 .810

BSTST Y .724 .651 .876 .908 .853 .845 .716 .754 .791

SVM N .817 .804 .895 .938 .899 .913 .514 .467 .781

BSTST N .741 .684 .876 .908 .853 .845 .394 .382 .710

DT Y .648 .654 .818 .838 .756 .778 .590 .589 .709

DT N .647 .639 .824 .843 .762 .777 .562 .607 .708

LR N .636 .545 .823 .852 .743 .734 .620 .645 .700

LR Y .627 .567 .818 .847 .735 .742 .608 .589 .692

NB Y .579 .468 .779 .820 .727 .733 .572 .555 .654

NB N .496 .562 .781 .825 .738 .735 .347 -.633 .481

• ACC – accuracy

• FSC – F-score

• LFT – lift

• ROC – area under ROC curve

• APR – average precision

• BEP – precision/recall break even point

• RMS – root mean square error

• MXE – cross-entropy

See[12] and[13] for more details on these metrics.

11 different real data sets were used in the comparison. The selection of data

sets is very diverse: they come from different fields, have different structure and

favor different types of algorithms[13].
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Table 4.2: Empirical comparison of Gradient Groves with 10 other algorithms.
Performance averaged over 8 scaled performance measures.

C cov adl ltr.1 ltr.2 med slac hs mg cal cod bac mean

GRGRV N .891 .985 .887 .957 .787 .920 .866 .926 .978 .926 .924 .913

GRGRV Y .884 .970 .876 .950 .756 .900 .869 .904 .969 .922 .916 .901

BSTDT Y .938 .857 .959 .976 .700 .869 .933 .855 .974 .915 .878 .896

RF Y .876 .930 .897 .941 .810 .907 .884 .883 .937 .903 .847 .892

BAGDT N .878 .944 .883 .911 .762 .898 .856 .898 .948 .856 .926 .887

RF N .876 .946 .883 .922 .785 .912 .871 .891 .941 .874 .824 .884

BAGDT Y .873 .931 .877 .920 .752 .885 .863 .884 .944 .865 .912 .882

SVM Y .765 .886 .936 .962 .733 .866 .913 .816 .897 .900 .807 .862

ANN N .764 .884 .913 .901 .791 .881 .932 .859 .923 .667 .882 .854

ANN Y .766 .872 .898 .894 .775 .871 .929 .846 .919 .665 .871 .846

BSTDT N .874 .842 .875 .913 .523 .807 .860 .785 .933 .835 .858 .828

KNN Y .819 .785 .920 .937 .626 .777 .803 .844 .827 .774 .855 .815

KNN N .807 .780 .912 .936 .598 .800 .801 .853 .827 .748 .852 .810

BSTST Y .644 .949 .767 .688 .723 .806 .800 .862 .923 .622 .915 .791

SVM N .696 .819 .731 .860 .600 .859 .788 .776 .833 .864 .763 .781

BSTST N .605 .865 .540 .615 .624 .779 .683 .799 .817 .581 .906 .710

DT Y .671 .869 .729 .760 .424 .777 .622 .815 .832 .415 .884 .709

DT N .652 .872 .723 .763 .449 .769 .609 .829 .831 .389 .899 .708

LR N .625 .886 .195 .448 .777 .852 .675 .849 .838 .647 .905 .700

LR Y .616 .881 .229 .440 .763 .834 .659 .827 .833 .636 .889 .692

NB Y .574 .904 .674 .557 .709 .724 .205 .687 .758 .633 .770 .654

NB N .552 .843 .534 .556 .011 .714 -.654 .655 .759 .636 .688 .481

For every performance measure we computed the values of all Groves on the

validation set, chose the best combination of parameters (using the validation set)

and reported the corresponding performance on the test set. Tables 4.1 and 4.2

show the results of our comparison with the other learning methods. The first

table shows results for each metric averaged across all test datasets. The second

table shows performances on each dataset averaged across all performance metrics.

Bold font shows the best performance in each column. Notice that all scores on

the various performance metrics are normalized to fall within range [0.0, 1.0] and

in such a way that a larger value indicates better performance. This way it is

easier to compare performance across metrics such as accuracy (acc), where higher

is better, and root mean squared error (rms), where lower is better.

The second column in each table shows if the predictions were calibrated or not

(there are two lines in each table for each algorithm, performance with calibration
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and without). We tried both of the calibration methods described in Section 4.3,

and report only the performance of the better method. We refer the reader to the

original comparison paper by [13] for more details about the experimental setup.

4.4.2 Results

On average, Gradient Groves is the best performing algorithm in this comparison.

Moreover, it is the best algorithm on every metric but accuracy even without using

any post-training calibration: results for Gradient Groves without calibration are

in most cases better than results for Gradient Groves with calibration. Gradient

Groves is the best algorithm not for all data sets: on some data sets it yields to

calibrated boosting and sometimes also to other ensembles of trees, or to neural

networks. However, its performance is remarkably consistent and remains among

the top performers for most datasets. In particular, on 8 out of the 11 datasets both

calibrated and uncalibrated Gradient Groves are among the top-4 algorithms. This

stability and excellent performance allows Gradient Groves to outperform boosting

on average. When boosting works poorly on a data set, its performance can be

very low, but Gradient Groves never exhibits this poor behavior.

4.4.3 Gradient Groves vs. Additive Groves

Table 4.3: Uncalibrated Gradient Groves vs. calibrated Additive Groves. Scaled
performance measures are averaged over 11 datasets

C ACC FSC LFT ROC APR BEP RMS MXE mean

GRGRV N .868 .835 .945 .972 .955 .941 .886 .904 .913

ADGRV Y .879 .822 .944 .967 .944 .940 .883 .889 .908

Additive Groves is a regression algorithm, and we cannot compare it directly

to Gradient Groves and other classification algorithms. When the datasets have

binary (0/1) response, predictions of a regression algorithm can be greater than
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Table 4.4: Uncalibrated Gradient Groves vs. calibrated Additive Groves. Perfor-
mance averaged over 8 scaled performance measures.

C cov adl ltr.1 ltr.2 med slac hs mg cal cod bac mean

GRGRV N .891 .985 .887 .957 .787 .920 .866 .926 .978 .926 .924 .913

ADGRV Y .882 .979 .920 .956 .735 .898 .915 .910 .903 .979 .918 .908

1 or less than 0. Additive Groves indeed provided many of such out-of-bounds

predictions and for this reason it was impossible to calculate some of the metrics.

However, after calibration predictions returned to 0 − 1 range and therefore we

were able to add calibrated Additive Groves into comparison. Tables 4.3 and 4.4

compare calibrated Additive Groves with uncalibrated Gradient Groves. Additive

Groves also achieve high performance, however, Gradient Groves still have better

results on average and, as noticed above, the latter algorithm does not require

calibration. There is another reason why Gradient Groves might be preferred

to Additive Groves for classification: Gradient Groves can be extended to multi-

class case similar to how L2 TreeBoost is extended to LK TreeBoost[28]. Additive

Groves, a regression algorithm, can be adapted to binary classification, but not to

multi-class case.
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CHAPTER 5

INTERACTION DETECTION

We introduce a new approach to interaction detection. It is based on comparing

the performance of restricted and unrestricted predictive models. This avoids the

drawbacks of previous methods, because it does not require explicit modeling of

interacting terms and reports only those interactions that are present in the actual

input data. However, the choice of model and the restriction algorithm used are

crucial for this framework. We explain why additive models are able to provide the

required accurate restrictions and further show that Additive Groves works well

in this framework. We also investigate how correlations in the data complicate

interaction detection and suggest how this problem can be dealt with via feature

selection.

The advantage of our new approach for interaction detection, compared with

traditional statistical approaches, is that it is more automatic and does not require

limiting the functional form that interactions might take. Statistical methods

often represent only multiplicative interactions and thus may miss other forms

of interactions. When little is known about the system under study, data-driven

scientific discovery requires the data to “speak for themselves” with a minimum

of analyst input or assumptions. It is possible to conduct a fully nonparametric

analysis with the method we propose in this paper, which is particularly valuable

for exploratory analysis.

5.1 Estimating Interactions

Let F ∗(x) be an unknown target function and let F (x) be a highly accurate model

of F ∗ that can be learned from a given set of training data. Furthermore, let Rij(x)

denote a restricted model of F ∗ that is learned from the same training data. It
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is restricted in the sense that it is not allowed to contain an interaction between

xi and xj, but apart from this limitation should be as accurate a model of F ∗ as

possible.

Our interaction estimation technique is based on the following observation. If xi

and xj interact, then F (x) should have significantly better predictive performance

than Rij(x), because the latter cannot accurately capture the true functional de-

pendency between xi and xj. On the other hand, if the two variables do not

interact, then the absence of the interaction from the model should not hurt its

quality. Hence in the absence of an interaction between xi and xj the predictive

performance of the restricted and the unrestricted model should be comparable.

Note that in order to get an adequate estimate of performance, we must measure

it on test data not used for training.

Quantifying interaction strength. We can quantify Iij, the degree of in-

teraction between xi and xj, by the difference in performance between F (x) and

Rij(x). We measure performance as standardized RMSE: root mean squared error

(RMSE) scaled by the standard deviation in the response function. Scaling is done

to make the results comparable across different data sets; StD(F ∗(x)) is calculated

as standard deviation of the response values in the training data.

stRMSE(F (x)) =
RMSE(F (x))

StD(F ∗(x))
(5.1)

Iij(F (x)) = stRMSE(F (x)) − stRMSE(Rij(x)) (5.2)

Setting the threshold. To distinguish whether a positive value of Iij indi-

cates presence of an interaction or happened due to random variation, we measure

whether the performance of Rij(x) is significantly different from the performance of

F (x). We follow common practice and define a difference of three standard devia-

tions of the latter from its mean as significant. The distribution of stRMSE(F (x))
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can come either from different random seeds for bagging or from different data

samples (e.g., n-fold cross validation). The threshold for significant interactions

then becomes:

Iij(F (x)) > 3 · StD(stRMSE(F (x))) (5.3)

Note that everything above naturally generalizes to higher-order interactions as

long as there exists a method to restrict the model on a specific type of interaction.

5.2 Choosing a Prediction Model

To correctly estimate interaction strength with our model comparison technique,

we have to make sure that a model has the following key properties:

1. High predictive performance when modeling interactions: if there is an in-

teraction, it should be captured by the unrestricted model.

2. High predictive performance when the model is restricted on non-interacting

variables: if there is no interaction, performance of the restricted model

should be no worse than the performance of the corresponding unrestricted

model.

The first requirement is satisfied by many learning techniques, e.g., bagged de-

cision trees of adequate depth, SVMs, or neural nets. Boosted stumps, on the

other hand, do not model interactions. Since they represent functions as the sum

of components, each of which depends only on a single variable, boosted 1-level

stumps cannot be used in our framework.

While many models satisfy the first requirement, the second requirement —

that models perform as well when interaction between non-interacting variables is

restricted — is far more challenging. Even when there is a straightforward way of

explicitly preventing specific interactions, often the resulting restricted model will
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not perform as well as the unrestricted model because the restriction may hamper

the search in model space compared to the unrestricted model.

Consider a single decision tree. Variables in the tree can interact only if they

are used on the same branch of the tree. So the obvious way to restrict interaction

between specific variables is to not use one of them if the other already was used

earlier on this branch. Now suppose there is no interaction between variables A

and B, but they both are important — if the tree does not use one of them, its

performance drops. Assume further that A is more important than B. The tree

will tend to choose A earlier than B on all branches (in the worst case it will use

A at the root) and will then never be able to choose B. Since B is important, the

performance of this restricted tree will drop even though there was no interaction

between A and B.

One might be tempted to address this problem with an ensemble method like

bagging. Unfortunately the situation will not improve much. In bagging, every

tree tries to capture the same function from a different sample of the train set. If

A is more important, most trees will choose A before B, use of B will be restricted,

and performance will drop as before.

To detect absence of interactions between important variables, we need to build

a restricted model that uses these variables in different additive components of the

function. Additive models based methods naturally fit this requirements. Each

component in an additive model is trained on the residuals of predictions of all other

previous models in the ensemble. The training set for the new model component

is created as the difference between true function values and current predictions of

the ensemble. This way, when the function has additive structure, different models

(or groups of models) are forced to find and model different components of this

structure as opposed to each modeling the whole function.
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Not all models that fit residuals are suitable for this framework. Linear mod-

els do not model interactions, while generalized linear models disguise additive

structure with a non-linear transformation. Neural networks pose problems be-

cause they either have additive structure (1 internal layer), or the ability to model

complex non-linear functions (several layers), while we need an algorithm that com-

bines both. Restricting interactions in a multi-level network splits it into subnets,

ultimately leading to ”groves of nets”.

In this research, we used layered Additive Groves for the purposes of interac-

tion detection. There exist other methods that might work as well, e.g., gradient

boosting trained to minimize least squares loss[28]. However, it is important to

understand that the two requirements stated in the beginning of this section are

crucial and many (most?) learning algorithms do not satisfy them.

For Additive Groves, although dynamic programming training provides better

performance for unrestricted models, we have encountered problems with it when

training restricted models. Therefore we prefer layered Additive Groves for interac-

tion detection. Note that we need to use layered training even for the unrestricted

model in order for the performances to be comparable.

5.2.1 Parameter Space

Here we illustrate how the performance of a Grove depends on its two parameters—

the number of trees and their size. Performance of a model depends on its com-

plexity, which for trees roughly corresponds to the number of partitions the model

creates. Complexity of a Grove can be controlled in two ways: through the size of

the individual trees and the number of trees. To some extent, one would expect

that a reduction in the size of individual trees can be compensated by a larger

number of trees in the Grove. Our empirical observations confirm this intuition.
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Figure 5.1: Performance
(RMSE) of the unre-
stricted Grove on the
synthetic dataset.
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Figure 5.2: RMSE of the
restricted Grove; restric-
tion on interacting vari-
ables x1, x2.
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The Grove model has two main parameters: N , the number of trees in the

Grove, and α, which controls the size of each tree (only nodes with more than a

fraction of α of the training cases are split when growing the tree). Figure 5.1

shows a contour plot of how model performance depends on both parameters for

a synthetic dataset without noise described in Section 3.1.2. The performance is

measured as root mean squared error (RMSE) on the test set. Notice that lower

RMSE implies better performance.

Figures 5.2 and 5.3 show an analogous performance grid on the same dataset

for restricted Groves. In Figure 5.2 the Grove is restricted on interacting variables

x1 and x2, in Figure 5.3 the Grove is restricted on non-interacting variables x3 and

x4. We can see that the performance in Figures 5.1 and 5.3 is almost identical for

every parameter combination. The performance of the model where interacting

variables are restricted is noticeably worse. We observed similar results for other

datasets.

It is worth noticing that Figures 5.1 and 5.2 are similar in the lower left corner.

This happens because for these parameter values even the unrestricted model is not
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complex enough to capture the interaction between x1 and x2. This highlights the

fact that in order to detect interactions, we have to use models that are complex

enough (i.e, have many large trees) to achieve the best possible performance.

5.3 Feature Selection

Correlations among features are common and complicate the task of detecting

interactions. Suppose there exists an interaction between variables xi and xj. At

the same time, a third variable, xk, is present in the data. Assume it is highly

correlated with xj, to such an extent that the model can freely use either xk or

xj with similar results. In this case we will not be able to detect the interaction

between xi and xj. When we restrict the model to prevent a tree from using xj,

it can use xk instead and performance will not drop. The same will happen when

we try to detect an interaction between xi and xk.

Correlation among features is an intrinsic problem of high dimensional data

that confronts all methods for interaction detection. For example, methods based

on partial dependence functions[20] suffer from a similar problem. The unrestricted

prediction model might sometimes use xj and sometimes xk. As a result it will find

only weak interaction between xi and xj and also between xi and xk, even though

the true interactions are much stronger. If there are more than two correlated

variables (again, this is common in high-dimensional datasets), the interaction can

be spread out in tiny portions over all of them, making it virtually impossible to

detect.

As a consequence, before attempting to detect interactions, we must eliminate

correlations. This can be achieved by a feature selection process, which removes

some of the variables. The final set of variables should be a compromise between

two goals: (1) The performance of the unrestricted model should still be good,
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ideally at least as good as before feature selection. (2) Each variable should be

important, i.e., if we remove it from the set of features, the performance of the

unrestricted model should drop significantly. The second criterion also gives us

an estimate of the maximum strength of interactions that we can detect: if the

performance of the unrestricted model drops by δ when we remove xi, then we

cannot expect the performance of the best model restricted on xi and xj to drop

by more than δ. The intuition here is that removing an important variable is a

stronger restriction than prohibiting its interactions.

We use a variant of backward elimination[23] for the feature selection process.

The main idea is to greedily eliminate all features (variables) whose removal

either improves performance or reduces performance by at most ∆ compared

to performance on the full-feature data set. In our experiments we estimated

d = StD(RMSE(F (x))), where F (x) is the unrestricted model, before running

feature selection and used ∆ = 3d.

The feature selection procedure is not stable—it depends on the order in which

we test each feature. For example, if we consider two completely correlated vari-

ables xj and xk, we can remove xj and leave xk in the set of the features. Or we

can do exactly the reverse, depending on which variable we tried to remove first

during feature selection. If there is a strong notion of which features should stay

in the data set after feature selection, i.e., if we want to test certain features for

interactions, the feature selection process should be modified so that features of

interest are not removed.

5.4 Complexity Issues

One concern about interaction detection is the need to conduct a separate test

for each interaction. If we want to test for all possible interactions, in theory we
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need O(nk) tests, where n is the number of variables and k is the order of the

interaction. However, such complexity is unlikely to be required in practice. First,

the feature selection process usually leaves a relatively small set of features that

makes it feasible to test all pairs for possible interactions. Second, as noted by[26],

interactions possess an important monotonicity property. A k-way interaction

can only exist if all its corresponding (k − 1)-interactions exist. This fact is a

straightforward consequence from the definition of a k-way interaction. Hence after

we have detected all 2-way interactions, we need to test for 3-way interactions only

for those triples of variables that have all 3 pairwise interactions present, and so

on. As complex interactions are rare in real datasets, in practice we usually need

only few tests for higher-order interactions. Some domains do pose an exception,

for example, see our experiments on the kin8nm dataset.

5.5 Experiments

We have applied our approach to both synthetic and real data sets. We can

evaluate the performance of our algorithm on synthetic data because we know the

true interactions; for real data we try to explain the detected interactions based

on the data set description.

In all our experiments we used 100 iterations of bagging. Apart from that,

Additive Groves requires two parameters to be set: N (number of trees in a single

Grove) and α (fraction of train set cases in the leaf, controls size of a single tree).

We determined the best values of α and N on a validation set and reported the

performance of Additive Groves with these parameters on a test set. We ran each

experiment for the unrestricted model 10 times, using different random seeds and

therefore different bootstrap samples for bagging. From these results we estimated

the distribution of performance and then calculated the interaction threshold us-
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ing Equation 5.3. After that we ran the experiment for each unrestricted model

only once. If the resulting estimate of the interaction was above the threshold,

we considered it to be evidence of an interaction. Otherwise it was considered in-

significantly different from zero, indicating absence of an interaction. Notice that

due to variance, in the latter case the estimate could be even negative, but should

always be close to zero.

5.5.1 Synthetic Data

This data set was generated by a function that was previously used in [26].

F (x) = πx1x2

√
2x3 − sin−1(x4) +

log(x3 + x5) −
x9

x10

√

x7

x8

− x2x7 (5.4)

Variables x1, x2, x3, x6, x7, x9 are uniformly distributed between 0.0 and 1.0 and

variables x4, x5, x8 and x10 are uniformly distributed between 0.6 and 1.0. Training,

validation and test set contain 1000 points each. Best parameters were detected

as α = 0.02 and N = 8. Feature selection eliminated variables x6 (not present in

the function) and x8 (virtually no influence on the response). For each of the 28

pairs of remaining variables we constructed a restricted model and compared it to

the unrestricted model. Figure 5.4 shows the interaction value for each variable

pair as computed by Equation 5.1. The dashed line shows the threshold. We

can see a group of strong interactions high above the threshold — pairs (x1, x2),

(x1, x3), (x2, x3), (x2, x7), (x7, x9). All cases without interactions fall below the

threshold. There are also several weak interactions in the data set: our estimate

for (x9, x10) is barely above the threshold and we failed to detect interactions

(x3, x5) and (x7, x10). By construction, x5 and x10 have a small range and their

interactions are not significant. There is only one triple of variables with 3 pairwise
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interactions detected: (x1, x2, x3). A separate test correctly reveals that there is a

3-way interaction between them. Note that this is the only higher-order interaction

that we need to test to conclude the full analysis. The original formula has another

4-way interaction, (x7, x8, x9, x10), but interactions of x8 and x10 turned out to be

very weak in the data, so the model did not pick them up.
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Figure 5.4: Interaction estimates on synthetic data

For more realistic results, we generated a version of the same data set with a

2 : 1 signal-to-noise ratio. Now feature selection left only 5 variables: x1, x2, x3, x5,

x7, and results of interaction detection between those variables were qualitatively

the same as the correspondent results for the data set without noise.

5.5.2 Real Data Sets

We have run experiments on 5 real data sets, 4 of them are regression data sets

from Lúıs Torgo’s collection[47], and the last one is a bird abundance data set from

the Cornell Lab of Ornithology[11]. We used 4/5 of the data for training, 1/10 for

validation and 1/10 for testing.

55



California Housing

California Housing is a regression data set introduced in [38]. It describes how hous-

ing prices depend on different census data variables. Parameters used: α = 0.0005,

N = 6. Feature selection identified six variables as important: longitude, latitude,

housingMedianAge, totalRooms, population and medianIncome. [27] describes the

joint effect of latitude and longitude on the response function. Our results confirm

that there is a clear strong interaction between these two variables — the location

effect on prices cannot be split into the sum of latitude and longitude effects. We

have also found an evidence of interaction between population and totalRooms

(Figure 5.5).
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Figure 5.5: Interaction estimates for California Housing.

Elevators

This data set originates from an aircraft control task [10]. Parameters used: α =

0.02 and N = 18. Feature selection left six variables: climbRate, p, q, absRoll,

diffRollRate, Sa. We detected strong pairwise interactions in the triple (absRoll,

diffRollRate, Sa) and a separate test confirmed that this is indeed a strong 3-way

interaction (Figure 5.6). No other interactions were found.
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Figure 5.6: Interaction estimates for Elevators data.

Kinematics (kin8nm)

The kin8nm dataset from the Delve repository [42] describes a simulation of an 8-

link robot arm movement. Its input variables correspond to the angular positions of

the joints and it is classified as highly non-linear by its creators. Parameters used:

α = 0.005 and N = 17. Our analysis produced symmetrical results that reveal

the simulation nature of the dataset: all 8 features turn out to be important, 2

of them do not interact with any other features and the other 6 are connected

into a 6-way interaction (Figure 5.7). For brevity we show only results of tests

for 2-way interactions and the final 6-way interaction, but we have also conducted

tests for 20 3-way, 15 4-way and 6 5-way interactions between those 6 variables

following the procedure described in Section 5.4. All tests confirmed the presence

of interactions. kin8nm is the only data set where we had to test for many higher-

order interactions. This is a property of the domain: the formula describing the

end position of the arm based on joints angles results from interaction between

most of the variables.
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Figure 5.7: Interaction estimates for Kinematics (kin8nm) data.

CompAct

Another dataset from the Delve repository, it describes the level of CPU activity

in multiuser computer systems. Parameters used: α = 0.05 and N = 18. Fea-

ture selection left 9 variables: lread, scall, sread, exec, wchar, pgout, ppgin, vflt,

freeswap. This data set turns out to be very additive. Although there are many

2-way interactions, they all are relatively small (Figure 5.8). The largest inter-

actions are (freeswap, wchar), describing the joint effect of the number of blocks

available for swapping and system write call speed, and (freeswap, vflt), describing

an interaction between the same available blocks variable and the number of page

faults.
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Figure 5.8: Interaction estimates for CPU Activity (CompAct) data set.

House Finch Abundance Data

We tested our approach on a dataset with sightings of House Finches in the North-

Eastern US as introduced in[11]. The strongest interactions that we detected are

between the following variables: (latitude, longitude, elevation) and (year, latitude,
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longitude). The first 3-way interaction describes the effect of geographical position

which is expected to be non-additive. But the interactions between year and

location is less trivial. Normally one would not expect that the effect of latitude or

longitude on bird abundance would be very different in different years. However,

it turns out that during the decade covered by the data set, the population of

House Finches was suffering from an eye-disease that was spreading slowly and

was responsible for changing the effect of geographical location on bird abundance

over time. Our results show that interesting domain information like this can be

discovered with the help of interaction detection analysis.

5.6 Comparison of Models: Statistical Testing

In this section we discuss possible methods to test how significant the difference

between unrestricted and restricted model is. For all experiments in this thesis

the first of the described methods was used, primarily because of running time

concerns, however, it has some drawbacks and other tests could be possible.

5.6.1 One-Sample Z-Test

In the method we currently use we estimate whether the difference between the

models is significant in the following way: for a single test we generate a single

restricted model and many (we use 10) unrestricted models. Randomization in

unrestricted models comes from using different bootstraps for bagging. We further

evaluate the performance of all models on the test set, estimate mean (µ̂) and

standard deviation (σ̂) of the distribution of performances for unrestricted model,

and declare that the restricted model is significantly different from the unrestricted

if its performance is different from µ̂ by more than 3σ̂.
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This procedure can be explained as following in statistical terms. First, we

make assumptions about the distributions of performance values.

1. Performance estimates of models of the same type (i.e. restricted or unre-

stricted) are distributed normally.

2. When there is no interaction, performance estimates of restricted and un-

restricted models come from the same distribution, i.e. normal distribution

with the same mean and variance.

Then, we form the null hypothesis. It states that the interaction is absent

and therefore, following the second assumption, the single estimate of a restricted

model comes from the same distribution as all estimates of unrestricted models.

After that we assume that µ̂ and σ̂ are accurate estimates of true parameters

of the normal distribution and perform a z-test to test how likely performance

of restricted model comes from normal distribution with mean µ̂ and standard

deviation σ̂. We use z-score of 3 as a threshold, it corresponds to a confidence level

of 0.9987 for a one-sided test.

Although this approach works quite well in practice, it has several drawbacks

from the theoretical point of view. First, z-test assumes that parameters of normal

distribution are known. As in our case they are estimated, t-test probably would

have been more appropriate. Second, and this is a more serious issue, the second

assumption might be too strict. Namely, the part that claims that distributions of

results for restricted and unrestricted models have the same variance when there is

no interaction might be wrong in some cases. Even if the models are equally good

(i.e., have the same performance on average), these are different types of models,

therefore variance in their performance values can be different. If the variance for

restricted models is higher than for unrestricted, then we risk rejecting the true

null hypothesis with higher probability then we expect.
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In the rest of the section we discuss other possible approaches that don’t have

the problem described above.

5.6.2 Two-Sample T-Test

The most statistically sound approach would be to collect many samples of per-

formance estimates for both restricted and unrestricted models, estimate their

distributions, and test whether their means are the same. One possible test is a

two-sample t-test for different variance. The assumptions are now simplified:

1. Performance estimates of models of the same type (i.e. restricted or unre-

stricted) are distributed normally.

2. When there is no interaction, performance estimates of restricted and unre-

stricted models come from distributions with the same mean.

In this test, t-value is calculated by the following formula:

t =
X̄1 − X̄2
√

s2

1

n1

+
s2

2

n2

(5.5)

where s is an unbiased estimator of variance. Distribution of this statistics is

approximated with Student’s t distribution with the number of degrees of freedom

calculated as

df =
(s2

1/n1 + s2
2/n2)

2

(s2
1/n2)2/(n1 − 1) + (s2

2/n2)2/(n2 − 1)
(5.6)

Although this approach is more theoretically sound, its requires creating large

number of models for each test and for this reason is impractical.

5.6.3 Resampling Errors

There exist another approach that requires building a collection of many unre-

stricted models and only one restricted, and at the same time it does not require
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equal variance assumptions. Here is the outline.

1. Build a single restricted model.

2. Calculate errors (predictions minus true values) on the train set.

3. Shuffle error values.

4. Create new labels for the train set by adding (shuffled) error values to pre-

dictions of the restricted model.

5. Build an unrestricted model on this new train set.

6. Estimate the performance of this model on the test set.

7. Repeat steps 3–6 several times.

8. Build and evaluate an unrestricted model on the original data.

9. Test whether the performance estimate received on the last step comes from

the same distribution as numbers acquired on steps 3–6.

The main underlying assumption in this approach is that we will be able to

approximate the true function by the restricted function well enough when inter-

action is absent, and that datasets with reshuffled errors will essentially represent

the same function as the original dataset. More formally, there are assumptions

concerning Bias/Variance/Noise decomposition of errors of the restricted model

and they are the following:

1. Noise term is normally distributed with zero mean and fixed variance with

respect to different points in the data.

2. Bias and Variance terms are negligible.

First assumption is quite standard and realistic for most data sets, however, the

second assumption might pose problems. The variance term might be relatively
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large for some datasets, therefore, the new data sets might be significantly different

from the original.

Another problem with this approach is still the complexity. At first it seems

that the number of generated models is the same as in the first approach: a single

test requires one restricted model and a set of unrestricted models. However, there

is a big difference when we compare the number of models required to conduct

all interaction detection tests for one data set. In the first approach we need to

generate a set of unrestricted models only once and then it can be reused. Each new

test requires building only one new (restricted) model. In this approach, however,

we would need to build the whole set of models for every test, none of the models

can be reused.

5.6.4 Estimating Variance of Bagged Models

A possible way to reduce the complexity of all methods described above is to

estimate the distribution of performance values using a single model only. This

might be possible if we remember that an Additive Groves model is an fact an

ensemble of single Grove models. More, it is an ensemble produced by bagging:

every prediction is an average of single predictions and therefore distributions of

performance estimates of single Grove models and the correspondent distribution

of performance of Additive Groves are related. Here is an initial analysis of how

we could estimate the latter through the former.

Squared errors of a single model (MSE) are often decomposed as a sum of

squared bias and variance (noise is considered a part of bias in this approach).

• Bias is an error due to the type of model — an average absolute error that

all models of this type will make.

• Variance term is variance of error due to differences in the models. Errors are
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assumed to be normally distributed with zero mean and standard deviation

σ across different models. Therefore variance term itself is distributed as χ2
1

streched by a factor of σ2 and has mean σ2 and variance 2σ2.

Squared bias stays constant for different models (we define this constant as C).

Therefore MSE of a model is distributed as χ2
1 streched by a factor of σ2 and

shifted by C. Mean of this distribution is equal to C + σ2 and variance equals to

2σ2.

Suppose we do bagging and average N bagged models. Bias stays constant,

while variance is decreased by factor of N (standard deviation is decreased by

factor of
√

N). Therefore MSE of bagged models will be distributed as stretched

and shifted χ2
1 with mean of C + σ2

N
and variance of 2σ2

N
.

When we build a single ensemble of bagged models (e.g. single Additive Groves

model), we build N single models (e.g. single Groves) and therefore can directly

estimate mean and variance of their MSE values, calculate estimates of C and σ

and then predict what the distribution of MSE of bagged models will look like even

without training several of those models. We did not extend this line of reasoning

to produce the strict mathematical form of distribution of stRMSE, the measure

that we actually use, but it seems to be possible at least on an approximate level.

A possible caveat in this approach is in that bagging does not always decrease

the variance by a factor of N . It happens only in an ideal theoretical case when

the data set is infinite. Otherwise bagged models are not exactly independent

because they are trained on bootstraps drawn from the same data set. In some

cases variance of bagged models might end up being visibly higher then estimated,

especially when the data set is relatively small and noisy (see, for example, our

ornithology data sets in Section 7).
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5.7 Discussion

We presented a novel technique for detecting statistical interactions in complex

data sets. The main idea is to compare the predictive performance of unrestricted

models to restricted models, which do not contain the to-be-tested interaction.

Although this idea is quite intuitive, there are significant practical challenges and

few algorithms will work in this framework. We demonstrated that layered Addi-

tive Groves can be used in this approach due to its high predictive performance

for both restricted and unrestricted models. Results on synthetic and real data

indicate that we can reliably identify interactions.
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CHAPTER 6

PRACTICAL ISSUES

In this section we describe a variety of issues that appear when working with

large noisy real-world data sets. We discuss many subtleties and problems one

needs to be aware of in order to perform interaction detection analysis successfully

when working with such data sets. In particular:

1. Correlations in the data are a big problem. A restricted model can use

a correlated variable to effectively bypass the restriction and achieve good

performance even if there is an interaction. Therefore, a thorough feature

selection process is required before we can test for any interactions.

2. The second issue is the appropriate choice of parameters for the learner (Ad-

ditive Groves). Parameters resulting in the best possible predictive perfor-

mance will not necessarily result in the most reliable model for interaction

detection.

3. After detecting an interaction, it is important to visualize and interpret it.

During this process we have to be aware that interactions in the model and

interactions in the data sometimes are not the same. For example, because

the distribution of the interacting variables’ values is not independent, some

parts of visualisation plots might not be supported by any real data and thus

should be ignored when interpreting the results.

6.1 Overfitting Issues

Experiments with Groves on synthetic and standard real data sets from repositories

might lead to a belief that complex models with larger trees always demonstrate

performance at least as good as their simpler counterparts as long as enough bag-
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ging iterations are performed. Such belief might be based on the fact that this is

how the ensembles of bagged trees usually behave. However, when working with

real noisy data sets, we discovered that this claim is not always true neither for

Groves nor for bagged trees themselves.

6.1.1 Overfitting in Bagged Trees

Bagging[6] is a well-known ensemble method that creates variation in a set of

models by sampling from the training set, and then decreases variance by averaging

the predictions of these models. Large decision trees are low-bias, high variance

models that benefit significantly from bagging, and often bagging works best with

larger trees. However, on noisy ornithology data, large trees perform much worse

than small trees, even after a large number of bagging iterations. Figure 6.1

shows the performance of 100 bagged trees of different sizes on the commonly used

California Housing[35] data set, and for the Horned Lark, one of the species in

the RMBO data set (described in more details in Section 7). The difference in

performance of bagging for large and small trees on the two data sets is striking.

This poor performance of bagging large trees sometimes happens on large noisy

data sets that have few useful attributes. Bagging can never remove variance

completely, because it draws versions of the data again and again from the original

training data set. The different training samples inevitably overlap and produce

partially the same results. On cleaner data sets with many attributes this effect is

not very visible, but on real data that do not possess these qualities, the situation

can be as bad as illustrated in Figure 6.1.
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Figure 6.1: Performance of 100 bagged trees on ”standard” California Housing
data set vs. noisy RMBO data. Small RMSE means better performance. Even
with bagging large trees (right) overfit much more then small trees (left) on RMBO
data.

6.1.2 Overfitting in Additive Groves

Experiments in Section 3.1 and Section 5.2.1 suggest that Additive Groves are

robust to overfitting as long as they are bagged sufficiently many iterations. This

is the case as long as the bagging process succeeds in removing most variance.

Unfortunately, similar to the observation above about bagging individual trees,

there are some data sets where this is not achieved. Figure 6.2 shows a contour

plot of how performance of Additive Groves depends on values of α and N on one

of ornithological data sets. Performance is measured using weighted root mean

squared error, therefore smaller numbers correspond to better performance. We

can see that the best performance is reached for comparably small models, and

then rapidly decreases when the models become more complex. This property of

the data makes the interaction detection process more complicated.
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Figure 6.2: Weighted RMSE of 100 bagged Additive Groves on RMBO data for
Horned Lark abundance

6.2 Feature Selection

As already mentioned in Section 5.3, correlations between variables pose a problem

for any kind of interaction detection algorithm. For our approach based on model

comparison, they can effectively “hide” existing interactions. Suppose we want to

test for an interaction between xi and xj, and there is another variable xk that is

almost identical to xj. When we restrict a model on interactions between xi and

xj, it can use xk instead of xj and thus bypass the restriction. Hence even if xi

and xj interact, we can not discover this unless we remove xk from the data.

In general, for detecting an interaction involving a variable xi, removing xi from
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the data set should result in a significant drop in performance. In fact, removing xi

is a stronger limitation for the model than restricting it on an interaction with xi.

If performance does not drop when we completely remove xi, we cannot expect it

to drop when restricting on an interaction with xi. More precisely, if performance

after removing xi drops by ∆, then performance of a model restricting on an

interaction involving xi theoretically can not drop by more than ∆. For these

reasons we have to eliminate all variables (features) from the data until we are left

with a set of variables such that removing any of them would significantly decrease

model performance. We discuss how to do this in the remainder of this section.

When working with large high-dimensional data sets, thorough feature selec-

tion based on generating different models for different combinations of features

is practically infeasible due to the large number of possible feature subsets. We

therefore adopt a two-step approach. In the first step we perform fast but rather

crude elimination of the least important features. In the second step we perform

a more careful elimination.

6.2.1 Fast Feature Evaluation

In this section we discuss possible approaches to fast and crude feature selection.

We first describe existing technique — sensitivity analysis, then suggest faster

white-box tree-based methods and then empirically show that some of these latter

methods produce similar results to sensitivity analysis and thus can be reliably

used for the first phase of feature selection.

Black Box Approach: Sensitivity Analysis

Sensitivity analysis assesses the importance of a feature by comparing the perfor-

mance of the model on a real test set against performance on a perturbed test set.
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To measure the importance of feature A, the perturbed test data set is generated

by adding noise to the A-values. More precisely, all A-values are shuffled, essen-

tially permuting the original vector of A-values (when viewing the data set as a

matrix whose rows are the different observation records and columns correspond

to the different features). If the attribute is important, performance should drop

on the perturbed test data set compared to the real one, because the model relies

on the spoiled values when making predictions.

There are many different measures of model performance. For our sensitivity

analysis, we selected a diverse set of commonly used measures to avoid measure-

related bias. In particular, we based the importance rankings on three different

metrics: accuracy (ACC), root mean squared error (RMS), and ROC area[41]

(ROC). The performance was measured on a separate test set, i.e., none of the

test records was used for training the bagged trees.

Table 6.1 shows the feature sensitivity results for the House Finch in BCR 30,

sorted by RMS. An entry in the table reports the relative loss in performance

between real and perturbed test data set, computed based on the corresponding

measure. For example, assume the accuracy on the real test data is x. Then,

after permuting the latitude values, the accuracy changes to y. The corresponding

relative loss for latitude then is computed as (x− y)/x. Since RMS is the only one

of the selected measures for which lower values indicate better performance, we

report (y − x)/x for it. Breiman[7] used a similar technique to measure variable

importance; this method is related to randomization and permutation tests used

in statistics[32].

Sensitivity analysis is a relatively fast method for estimating variable impor-

tance. Once the model is trained, we only need to evaluate its performance for

different perturbed test data sets, one for each attribute. This is much faster than
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Table 6.1: Top-20 attributes for sensitivity analysis, sorted by RMS
attribute ACC RMS ROC

latitude 0.079 0.15 0.070

longitude 0.0056 0.045 0.014

numfeeders hanging 0.012 0.034 0.013

halfdays 0.013 0.034 0.015

yearseason 0.012 0.032 0.014

dayselapsed 0.016 0.030 0.014

numfeeders thistle 0.0098 0.022 0.0095

ave fam sz 0.0016 0.011 0.0040

effort hrs atleast 0.0030 0.010 0.0045

asian 0.0014 0.0091 0.0030

elev ned 0.00023 0.0067 0.0024

evgr trees atleast 0.00072 0.0050 0.0017

numfeeders suet 0.00045 0.0048 0.0016

gcsnow2912 8.5E-05 0.0045 0.0015

pop00 sqmi 8.5E-05 0.0041 0.0012

vacant 0.00048 0.0037 0.0011

count area size 0.00016 0.0037 0.0012

other -0.00063 0.0035 0.0011

elev gt30 0.00012 0.0032 0.0010

ave hh sz -0.00093 0.0030 9.8E-4

the costly approach of re-training models for different sets of attributes, which

takes between 1 and 2 hours on a single CPU modern PC and is necessary for fea-

ture selection methods[30, 31, 23]. Nevertheless, for large high-dimensional data

sets like PFW, even sensitivity analysis requires considerable resources: evaluating

the sensitivity of a single feature using the 32K test cases for BCR 30 takes about

4-5 minutes. Using this approach for all 197 features of interest (or even pairs or

larger sets of features) and for all 1000 interesting BCR-species combinations re-

quires access to expensive high-performance computing resources. In the following

section we propose efficient heuristics to address this issue.

White Box Approach: Looking at Trees

The methods discussed in this section take advantage of the fact that we are

using ensembles of decision trees. Trees enable us to look inside the model to

see what attributes have been selected. Selected attributes clearly are important
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predictors for observation probability because they separate positive and negative

observations. If attributes are important for many of the trees in the ensemble,

then this provides strong evidence of their overall importance. The main challenge

is to define a good measure for quantifying the importance of an attribute in a tree

and in an ensemble of bagged trees.

We have implemented a range of different possible ranking methods that use

only the information about the tree structure and how a training set is partitioned

by the different trees. This information is available once the ensemble is built, so

there is no need to generate new models or new predictions in order to calculate

these rankings. This is a clear advantage over black box methods like sensitivity

analysis or feature selection. Our white box approach speeds analysis up by a

factor of more than 500! On some of the datasets we can compute the complete

ranking of all features in less than 2 minutes (no matter which of the methods

introduced below we are using), compared to 4-5min per feature for sensitivity

analysis.

The importance score of an attribute for the tree ensemble is computed by

summing the importance scores on the individual trees. Notice that the scores

computed by different methods are not normalized in any way, and hence are not

comparable. All we can derive from the different methods are attribute rankings.

To illustrate the differences between the methods, we will use the simple tree shown

in Figure 6.3. It splits on three attributes A, B, and C. The training set has 100

records; numbers in parentheses indicate the number of records affected by the

corresponding split (i.e., the number of records in the corresponding subtree).

We consider the following methods for computing attribute importance scores

on a single tree.

Number of trees (#trees). The first simple measure that we tried defines
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Figure 6.3: Sample decision tree

importance of the attribute as the number of trees in the ensemble that are using

it. It turned out that this measure does not work — more than half of all attributes

were used by all trees and therefore their importance could not be compared using

this method.

Number of nodes (#nodes). This is a very simple measure. The score of

an attribute is computed as the number of nodes in the tree that selected this

attribute for the split. In our example attribute A gets importance score 2, while

B and C receive importance scores of 1 each. This method will give too much

weight to continuous attributes, because the tree can split on them more often.

The following methods address this issue.

Weighting by height (height). Most greedy tree growing tends to choose

the most important attributes early, so they appear higher in the tree structure.

This method weights each node inversely proportionally to the length of the path

from it to the root. The root itself is considered to have importance 1, so in the

example attribute A receives importance 1+1/3 (importance of root + importance

of the rightmost subtree split), attributes B and C each have importance 1/2.

The example in Figure 6.3 illustrates a problem with the height-based weights.
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Attributes B and C receive the same weight, whereas splitting on them affects

different numbers of cases in the data set. To correct for this, the following methods

take into consideration the number of training cases affected by the split.

Weighting by size of training set — multiple counting (multiple).

This method weights a node by the number of training cases in its subtree, i.e.,

the cases affected by the split at this node. In the example, attributes A, B, and

C receive scores of 160, 80 and 20, respectively.

Weighting by size of training set — single counting (single). As with

weighting by the number of nodes, there is a risk that continuous attributes will get

over-weighted when using the multiple counting of training points. In the example,

the 60 records in the lower-right subtree with root A are counted twice towards

A’s score. To fix this problem, the single counting method assigns weight zero to

all nodes that have an ancestor with the same split attribute. In the example A

receives an importance score of 100 instead of 160, while the scores for B and C

do not change.

Weighting by size of training set — giving weight to the path (path).

This method is between the extremes of single- and multiple counting. Intuitively

training records from every leaf are distributed evenly between the splits on the

path from the root to the leaf. Each split is still counted, even if there is another

split on the same attribute in an ancestor node. In our example, the 30 records

from the rightmost node are distributed between the two splits on A and the one

split on B, i.e., 20 points go to A and 10 to B. Similarly, the 10 points from

the leftmost leaf are given to A and C, in this case 5 points to each. Overall A

receives an importance score of (counting inputs of all leaves from left to right)

5+5+10+20+20 = 60, B gets 0+0+10+10+10 = 30 and C gets 5+5+0+0+0 = 10.

It is worth mentioning that importance scores for all attributes sum to the size
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of the training set over each tree in this method. A similar method was used by

Friedman[20] for estimating attribute importance in an ensemble of rules.

Comparison of Rankings

For the comparison we used one of real-world ornithological data sets describing the

abundance of House Finches the U.S. Atlantic coastal plain region from southern-

most Maine to northern-most Virginia. This data set has 92, 514 observation

records, reporting the House Finch to be present 55, 860 times, and absent 36, 654

times. 197 attributes were available for analysis.

Comparison and analysis of different rankings revealed the following results.

All three measures based on size of training set in splitting nodes seem to be very

similar (Figure 6.4). This result is surprising, because different ways of estimat-

ing continuous attributes could in theory have significant influence on resulting

rankings. In practice we observed only minor differences.

#nodes and height produced rankings that are very similar to each other, but

differ from the previous group. Figure 6.5 shows that height and #nodes almost

always agree, but are very different from the diagonal where they would be if they

were correlated with single. Subsequent tests showed that results of these methods

are less reliable than those of single, multiple and path (see next subsection).

One of the sensitivity analysis rankings — sensitivity-rms — shows a lot of

similarity with the three most reliable methods from the “white-box” group (Figure

6.4). sensitivity-acc tends to agree with them only for the top ranked features and

then shows a significant amount of discrepancy (Figure 6.5). Accuracy is known to

be a measure with higher variance, but RMS is very stable. Hence we have more

confidence in the results of sensitivity-rms. sensitivity-roc produced results similar

to sensitivity-acc and therefore is omitted from the plot.
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Figure 6.4: Comparison of different rankings (first 50 features shown). X-axis
represents attributes in the order induced by ranking single, y-axis measures their
position in other rankings.

6.2.2 Sanity Check

There is no guarantee that taking the top-ranked features from any of these im-

portance measures will yield an ensemble with good predictive power. While pre-

diction accuracy is not the only goal of this study, it is a necessary precondition.

Clearly we cannot hope to learn something about this domain by studying inaccu-

rate models. Also, ecologists are interested in comparing the important attributes

of a species occurrence in different BCRs. This can be achieved by comparing

rankings, but only after checking that some minimum predictive performance is

met in all analyses to be compared.

As a sanity check, we compared the performance of bagged trees trained using

all features with bagged trees trained using only the top 20 features from the

different importance rankings. With all features, the bagged trees achieve a RMS
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Figure 6.5: Rankings that do not agree well with single. The farther from the
diagonal each point is, the larger is the disagreement.

of 0.3469, accuracy of 0.8336, and area under the ROC curve of 0.9012.

Figure 6.6 plots the ensemble’s RMS performance when only the top N features

from each ranking are used, for different values of N . Because the rankings differ

from each other, different features are included at each point for the different lines

(Table 6.2 and the RMS column from Table 6.1). The overall pattern is similar for

accuracy and ROC area, so we omit those graphs.

We make several observations from Figure 6.6. First, the ensembles built using

only 20 features perform quite well, although not quite as well as ensembles using

all the features. The top 20 features do seem to catch most of the predictive power

found in the full feature set. This gives us some confidence in relying on these

measures as indicators of which features are important for modeling the PFW

domain.

Second, while the rankings from single counting, path counting, and sensitivity-
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Figure 6.6: Performance as a function of the number of features used for training.
Each line represents a different method for ordering features by importance—
yielding slightly different sets of features.

rms analysis show similar behavior, the height-based ranking behaves very differ-

ently. This agrees with the finding above that the height importance measure is

not as highly correlated with the other measures.

One surprising aspect of this graph is that all the lines go up at least once: path

at feature 2, single at feature 5, sensitivity at feature 6, and height for the first

half of the graph. This phenomenon is partly caused by the feature dayselapsed;

whenever it is added, performance gets worse in this graph. Given that all the

measures rank this feature highly, and the ecologists believe it to be an important

predictor, this is rather surprising.

By 16 features, however, all the rankings have very similar performance. For

the most part performance asymptotes around 16 features, therefore these features

can be used for the next steps of our analysis.
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Table 6.2: Top-20 attribute rankings; ‘numfeeders ’ is abbreviated as ‘nf ’.
height path single

1 dayselapsed latitude latitude

2 yearseason dayselapsed halfdays

3 halfdays nf hanging nf hanging

4 temp lo atleast longitude longitude

5 temp hi atleast halfdays dayselapsed

6 precip len atleast yearseason yearseason

7 effort hrs atleast nf thistle nf thistle

8 snow dep atleast effort hrs atleast effort hrs atleast

9 latitude ave fam sz ave fam sz

10 nf hanging elev ned elev ned

11 nf ground asian asian

12 nf suet pop00 sqmi nf suet

13 longitude nf suet count area size

14 snow cov atleast vacant pop00 sqmi

15 nf platfrm count area size vacant

16 pop00 sqmi elev gt30 black

17 elev gt30 black age 65 up

18 nf water ave hh sz elev gt30

19 asian age 65 up ave hh sz

20 black houden houden

6.2.3 Backwards Elimination

To make the first step of feature selection fast enough, we used only bagged trees.

Now, for the more finegrained second step, we want to use the more expensive

Groves. This is important because Groves will be used for interaction detection,

hence we have to be sure that the remaining features are important from the

perspective of the Grove models. At this step we do not know anything about how

to set the Grove parameters α and N . We therefore build Grove models for the

data set with its remaining set of features selected at a previous step with a variety

of parameter combinations. From this “grid” of models (grid points are defined by

combinations of parameter values), we select values for N and α that resulted in

the best performance. These values are used for all models that are built in the

next series of feature elimination steps. For some exceptionally noisy data sets it

is possible that the best performance is produced by small models consisting of

few small trees or even single trees (N = 1). In the latter case Additive Groves
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become equivalent to traditional bagging of decision trees.

Recall that in order to be able to run effective interaction detection, we need to

be left with a small set of important features. Important here means the following

property: If we remove this feature, the performance drops by more than ∆. ∆

needs to be defined to indicate a significant difference. We estimate the distribution

of Grove performances on the data with all features currently in the set by creating

the model several times with different random seeds. We then define ∆ = 3 ∗ σ,

where σ is the standard deviation of the estimated distribution. Then we perform

standard backwards elimination. We begin with a model for the data set with all

current features. Then we try to remove features one-by-one. If the performance

does not drop by at least ∆, the feature is removed permanently. If it does,

the feature is considered important and left in the data. Removing features can

change the distribution of performances so this distribution needs to be recalculated

occasionally. We recalculate the distribution when selection can’t remove any more

features with the current estimates of the distribution.

This algorithm was described in Section 5.3. It implicitly assumes that re-

moving a feature will decrease the performance. However, this is not always the

case for noisy data sets and an extension of the algorithm is required. Trees can

mistakenly use “bad” features and benefit when those features are removed and

we have seen cases of significant improvement in performance during the second

step of feature selection. To handle this case, we extended the algorithm as fol-

lows: If performance is better than the original estimate by ∆, the algorithm must

recalculate the estimate of the performance distribution.
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6.3 Choosing Parameters for Interaction Detection

After we are left with only few important features, we need to choose the right

Grove model (right values of parameters) for interaction detection. At this stage in-

teraction detection should be easy for “standard” data sets, where complex Groves

perform at least as well more simple models: We find the parameters for the best

performing Grove model and then compare performance of restricted and unre-

stricted models using these parameters. With the challenging noisy data sets this

is not always possible. Our model should meet (or be a compromise between) the

following requirements:

1. It should be as complex as possible to catch all interactions.

2. It should have sufficient additive structure to allow for restrictions.

Ideally, to meet the first requirement, we need to choose the parameters that give

the best performance. To meet the second requirement, we need to choose large

N . From our experience, N = 8 usually is a safe value, N = 6 will work for most

data sets, but smaller values usually hurt the performance of the restricted models.

As mentioned above, it is easy to meet this requirement when bagging successfully

removes most overfitting. One can increase complexity of a model without harming

performance, as long as the model is bagged sufficiently. However, for noisy data

we might observe that the best performance is achieved by a rather small model,

while for more complex models the performance rapidly decreases below baseline.

Figure 6.2 shows the performance of the model for Horned Lark after the feature

selection. The best performance is achieved for N = 2 and trees of moderate size,

increasing complexity on any of these parameters decreases performance.

Selecting the final parameters for interaction detection is different for different

data sets, and occasionally requires multiple trials with a human in the loop.
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Fortunately, one needs to do this only once for each response function, regardless

of the number of features and interactions and the selected Grove parameters

remain the same for the rest of the interaction detection process. Our experience

can be summarized as follows:

• Since interaction detection uses the same basic model for the restricted and

unrestricted case, the process is fairly robust with respect to choosing Grove

parameters. Even with Grove parameter values that result in suboptimal

performance, we can still successfully discover interactions. In most cases we

can lose ≈ 8 ∗ ∆ of predictive performance without hurting final interaction

results.

• It is safer to choose a parameter combination for which Groves slightly un-

derfit (simpler than the best model), rather than overfit because variance

will be higher with the overfit models making the results less reliable.

• Even if there is no clearly optimal point with large N on the grid, we can

try points with small N and set the threshold for interaction presence higher

then usual when estimating the performance difference.

For example, we selected N = 6 and α = 0.2 for Horned Lark abundance data

based on the countour plot in Figure 6.2 and the rules described above.

Note that if different Grove parameters are selected than those used during

backward elimination, it is necessary to run another round of backward elimination

to make sure that each feature is still important for the new Grove configuration.

With the new parameters, removing the feature should result in performance drop

of at least ∆. If this is not the case, sometimes several more features will have to

be eliminated to make the features that remain important once more. Interaction

detection can only proceed for attributes that are important in the Grove model.
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Similarly to how we define whether an attribute is important, interaction is

considered significant if the difference between performance of the unrestricted

and restricted models is more than ∆. Notice that values of ∆ are different for

different data sets and model parameters and often indicate the amount of variance

in the model.

6.4 Visualization

After we detected a presence of an interaction between two variables xi and xj,

we want to see what their joint effect on the response function looks like. In

other words, we need to represent the response as a function of xi and xj only.

After that we can plot the joint effect of two variables as several one-dimensional

plots, each of which shows the dependence of the response value on xi for a fixed

value of xj. Different lines on the plot correspond to different values of xj. For

example, Figure 7.2 shows the joint effect of elevation and edge density of shrub

patches on the abundance of Lark Buntings. Each line correspond to an effect of

shrubs at some fixed level of elevation. Non-parallel regions of the lines correspond

to interactions and can provide us with insight into its nature. In this example

we can see that presence of shrubs shows a positive effect on abundance of Lark

Buntings on the lowest elevation, but on the higher elevations larger amounts of

shrubs patches on the contrary, discourage this birds. (See Section 7.4 for more

details on this interaction.)

A technique to create such two-dimensional models, partial dependence plots,

was introduced by Friedman[28] as a tool to visualize the effects of a fixed number

of variables averaged over the values of all other variables. The general “black-box”

method for generating partial dependence plots is rather complicated and requires

generating many synthetic data points. Fortunately, there exists an easier method
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for regression tree models that takes advantage of the ability of trees to deal with

missing values. When a case is missing the value of an attribute tested at a node, it

descends to the child nodes with weights corresponding to proportions of training

cases that went to each child. Cases apportioned this way reach multiple leaves

with different weights, and the predictions of each leaf are combined using these

weights. Given this approach to handling missing values in regression trees, a plot

of the effect of two specific variables can be created that averages over the values

of all other variables by setting the values of all other attributes to missing and

plotting the performance obtained by sweeping the values of the two variables in

question.
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Figure 6.7: Western Meadowlark. Partial dependence plot produced with an unre-
stricted model shows a spurious interaction between density of roads and density
of patches of cultivated crops

It is very important to notice that partial dependence plots by themselves are

unreliable for interaction detection, because they depict interactions in the model

instead of the data. Hooker[27] demonstrated that potential spurious interactions
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Figure 6.8: Western Meadowlark. Partial dependence plot produced with a re-
stricted model without an interaction between density of roads and density of
patches of cultivated crops

of arbitrary strength can appear in a partial dependence plot. This happens when

some parts of prediction model are unsupported by the data and only emerge

because of a presence of a few outliers.

Here is a stark example that emerged during our analysis of RMBO data:

Figure 6.7 pictures a partial dependence plot for joint effect of presence of roads

and cultivated crops areas on Western Meadowlark abundance generated by an

unrestricted model. The plot clearly shows a strong interaction similar to the

one we have just seen on Figure 7.2. However, there is no such interaction in

the data! The restricted model that does not have this interaction has the same

predictive performance: our performance comparison method estimated the size

of interaction as −0.00009 and the significance threshold as 0.0005, which clearly

indicates absence of interaction. 1 Figure 6.8 shows a similar plot produced by a

1When estimating a size of a non-existing interaction, negative numbers insignificantly differ-
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restricted model. We can see that the effect of roads corresponding to the highest

level of density of cultivated land patches is now very different from the previous

picture. However, the performance of the model is the same. The explanation

is that there are very few points with this level of cultivated land density in the

data, clearly not enough to estimate a real effect. The interaction that we could

see on Figure 6.7 is a mere random fluctuation. This example illustrates that

partial dependence plots should be used for visualization only, when we already

have confirmed the presence of interaction in the data by comparing restricted and

unrestricted models.

ent from 0, of course, can happen as often as positive numbers. Negative number significantly

different from 0 would indicate some problem, most probably bad choice of Groves parameters.
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CHAPTER 7

EXPERIMENTAL VALIDATION ON OBSERVATIONAL ECOLOGY

DATA

In this section we demonstrate our approach to interaction detection on real

data describing the abundance of different species of birds in the prairies east of the

southern Rocky Mountains. This data is very noisy. In fact, predictive models built

from this data perform only slightly better than baseline. We show, however, that

even when the data is this noisy, it is still possible to detect interactions between

important features and the response function. We demonstrate and interpret the

results of our analysis for several bird species.

7.1 Rocky Mountain Bird Observatory Data

The data used in our analyses come from the data warehouse of the Avian Knowl-

edge Network (AKN)[2], an international collaboration of government and non-

government institutions focused on understanding the patterns of distribution and

dynamics of bird populations across the Western Hemisphere. This collaboration is

creating the framework for gathering and storing existing and new bird-monitoring

data from all available sources. It organizes these resources in such a way as to

enhance application development, archiving, visualization and exploration, and

makes these data generally available. The AKN also creates information products

that use its data resources to produce visualizations such as maps, graphs, and

tables, as well as scientific and technical analyses.

We selected data from one bird-monitoring program run by the Rocky Mountain

Bird Observatory (RMBO)[3] for this analysis. The monitoring program, called

the Section Survey, has collected counts of birds of different species observed at

over 10,000 sites across a large part of the region known as the shortgrass prairie
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(Figure 7.1). This is an arid zone in the rain shadow of the Rocky Mountains,

Figure 7.1: Observation sites.

characterized by short and sparse vegetation. Bird species specialized to grassland

habitats, including those living in the shortgrass prairies, are some of the fastest

and most consistently declining bird species in North America[39]. The Section

Survey monitoring scheme is one effort to understand the causes and identify man-

agement actions that would reverse these declines. The Section Survey collects

data on both abundances of birds (using a distance-sampling protocol[8]), as well

as local vegetation at the survey sites. The goal is to identify associations between

bird abundance and local vegetation, and the objective of identifying management
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actions (such as livestock grazing regimes) that would make habitat more suitable

for grassland bird species. For our analyses, we used the numbers of detected birds

within 100 meters of the observer in a 3-minute period as the response variable,

with a different response for each species identified on the survey.

When choosing where to live, birds consider not just local habitat characteris-

tics — such as those measured by the Section Survey protocol — but also habitat

configuration over larger regions[43, 48]. Therefore a more complete understand-

ing of management actions requires not just an understanding of the effects of

local habitat features, but also needs to place their effects within the context of

larger-scale habitat configuration. Stated differently, we need to identify whether

local habitat manipulation will always be effective at increasing bird populations,

or whether local management will only be effective within specific larger-scale

configurations of habitat. We include the larger-scale habitat configuration us-

ing interpreted satellite imagery from the 2001 U.S. National Land Cover Data[1],

which classify habitat acoss the United States into 21 classes. The finest resolution

of this data is a 30m by 30m pixel, and we have aggregated the NLCD data into

a series of concentric squares (See Appendix, Table A.1), each centered on the

pixel containing a bird census location. Various measures of habitat configuration

(See Appendix, Table A.2) were calculated from these aggregations using the pro-

gram FRAGSTATS[34]. These habitat configuration metrics, combined with the

observed bird count response variable, are the data we analyse. The resulting data

sets contain 700 features and 20000 observations for each bird.

7.2 Choice of Loss Function

Our technique for finding variable interactions is based on the comparison of the

performance of models. To test for an interaction between variables xi and xj, we
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train two models. The restricted model is not allowed to model the interaction

between the variables. For the unrestricted model, there is no limitation in terms

of which interactions can be modeled or not. If appropriate models are used, then

the difference in performance between restricted and unrestricted model indicates

the strength of the interaction between xi and xj.

The first fundamental challenge is to select the appropriate performance mea-

sure, or loss function. A common choice for general regression problems is root

mean squared error (RMSE). However, this metric is less appropriate for bird ob-

servation data, which are counts. RMSE penalizes absolute deviation from the

true response value. For example, predicting 25 birds instead of 20 will be penal-

ized as heavily as predicting 5 birds when there were none. This is not desirable

because the estimation error for the smaller response value is much more serious.

For this reason analysis of point counts is often conducted using the logarithm of

the original response function.

Unfortunately, working with log-transformed response values has an undesir-

able side-effect on the interaction detection task. Instead of discovering additive

structure in the original function F (x), we would now search for additive structure

in the different function log(F (x)). Since log(f1) + log(f2) = log(f1 · f2) for any

response values f1, f2, we would in fact model multiplicative structure, instead of

additive, in the original function F . Modelling multiplicative interactions might

be of interest as well, but if we want to understand simpler additive interactions,

working with log counts is not appropriate.

So what loss function should be used to penalize errors for low counts more?

Instead of changing the response function, we change the loss that our models are

trying to minimize. In order to still obtain a simple additive loss and at the same

time achieve approximately the same effect as log-transforming the counts, we use
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the first 3 terms of the Taylor expansion of the squared error of log counts. Since

the first 2 terms of this particular expansion are equal to 0, this is equivalent to

only using the third term:

(log(y + 1) − log(F + 1))2 ≈
(

1

y + 1
(y − F )

)2

. (7.1)

Here y corresponds to the original response, F corresponds to the predicted value.

A constant value (usually 1) is added to the counts before taking the logarithm in

order to be able to allow zero counts. To derive this approximation, we view the

loss function as a function of F with y fixed and take the Taylor expansion at the

point F = y.

We substitute squared error in RMSE with the obtained weighted squared error
(

y−F
y+1

)2
and refer to the new loss as weighted RMSE. More, to make the results

comparable across data sets, we use a standardized version of this metric: we

divide it by similarly weighted standard deviation of response in the data set. The

baseline performance by such standardized metric is equal to 1 on every data set

and smaller numbers indicate better performance.

We would like to point out how challenging predictive modeling of RMBO data

is. The improvement over baseline typically is only 2%-5%. For example, for

Horned Lark, the bird we could extract most information about, the best value

of performance we could achieve is 0.974 (measured by loss discussed above with

baseline 1.0).

7.3 Feature Selection Details

At the first step we selected 50 useful features for each species. To do this, we

used one of the “white-box” feature evaluation techniques from Section 6.2.1. In

particular, we used the “multiple counts” method. This technique ranks attributes
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based on how often trees in the ensemble use them in their nodes. The larger the

subset of the train set in the node, the larger the score of the splitting attribute in

that node. Experiments in Section 6.2.1 showed that multiple counts, the simplest

and fastest of these metrics, produces results of similar quality compared to more

expensive methods.

As we mentioned above, using large trees hurts performance for the noisy

RMBO data. Hence for each species we generated several ensembles of 100 trees

of different sizes, tested their performance on the test set and then chose the best

performing one to use for determining feature importance. In most cases these

were ensembles consisting of relatively small trees, up to ≈ 10 or 20 nodes.

After we have chosen 50 most important features for each of the species, we

ran more detailed backward elimination analysis. Given the weak predictive per-

formance of models trained on the RMBO data, we were not surprised that feature

selection left few important features for most bird species. In the best case (Horned

Lark) we had 8 features left, in the worst cases, only 1 or 2.

7.4 Results of Interaction Detection Analysis on RMBO

Data

In this section we present and explain a few of the interactions we found in the

RMBO data using the interaction detection method described earlier. This interac-

tions provided new findings about both collected data and biological relationships

that were previously unknown before, and yet are consistent with the general body

of ecological knowledge.

The most complex, allbeit small, interaction that we identified was for Lark

Buntings (Calamospiza melanocorys), with elevation and density of scrub/shrub
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Figure 7.2: Lark Bunting. Interaction between elevation and density of edges of
scrub/shrub vegetation patches

edges simultaneously affecting bunting abundance (Figure 7.2). Size of interaction

is estimated as 0.00037, significance threshold as 0.00032. A higher density of

scrub/shrub edges denotes an area in which a moderate proportion of the habitat

contains short woody vegetation patchily inter-mixed with other habitats. At

the lowest elevation sites, farthest from the base of the Rocky Mountains, Lark

Buntings were more abundant in areas with a higher amount of patchily-distributed

scrub/shrub vegetation. However, closer to the Rocky Mountains, the presence

of scrub/shrub habitat inhibited Lark Buntings from settling. We believe that

this result indicates that the habitat classified as “scrub/shrub” represents very

different things in different parts of the study region, and that at higher elevations

“scrub/shrub” contains plant species or habitat configurations that are unsuitable

for Lark Buntings. In other words, we believe that this unexpected finding tells

us something about our predictors rather than about the birds we are studying,
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Figure 7.3: Horned Lark. Interaction between standard deviation in patch sizes
of wooded wetlands and density of roads, which are entirely edges at the pixel
resolution of our habitat data

specifically that the scrub/shrub habitat class is more heterogeneous than the

classification would at first lead us to suspect.

The Horned Lark (Eremophila alpestris ; known as the Shore Lark in Europe) is

a species widely distributed across the Northern Hemisphere. It preferentially lives

in barren habitat with short and patchy vegetation. The most unexpected inter-

action that we found was related to this preference for barren habitat: abundance

of Horned Larks differed across our study area as a function of both the density of

roads and the variation in sizes of patches of wooded wetland. Size of interaction

is estimated as 0.00163, significance threshold as 0.00085. In the shortgrass prairie

region “wooded wedland” effectively means wooded areas along rivers and these

are essentially the only large areas of taller vegetation in the entire region. We

suspect that the variation in sizes of wooded patches per se is not important. Ex-
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Figure 7.4: Habitat of Horned Larks. Color coded NLCD layers: black — devel-
oped, open space (roads); dark grey — wooded wetlands; light grey — grassland;
white — water.

amination of the full set of features indicates that increased total area in a habitat

is associated with increased variation in patch sizes: A large range of variation

in patch sizes can only exist when at least some large patches are present. Thus,

greater variation in size of wooded patches is related to a broader distribution of

trees in the overall region and a greater fragmentation of the open habitat that

the larks prefer. Figure 7.3 shows that there is a sharp drop in abundance of

Horned Larks as soon as there is any substantial amount of wooded wetland habi-

tat. Horned Larks do not like wooded habitat. However, the effect of woodland

was ameliorated by the presence of roads, with more Horned Larks present, even

in areas with higher amounts of forest, when these regions had a higher density

of roads. Effectively, the roads create open areas of habitat preferred by Horned

Larks. Figure 7.4 shows a representative example of the distribution of habitat

96



0 5 10 15

0.
25

0.
30

0.
35

0.
40

0.
45

Standard Deviation of Wooded Wetland Patch Size (km)

P
re

di
ct

ed
 C

ou
nt

s,
 H

or
ne

d 
La

rk

Low September Precipitation

High September Precipitation

Figure 7.5: Horned Lark. Interaction between variation in sizes of patches of
wooded wetlands and precipitation in September

types in an area of lark habitat (grassland) in which wooded wetlands and roads

are also present in relatively high densities. Detecting this interaction has helped

us identify an unexpected impact of human modification of landscape.

Another interaction identified affecting the abundances of Horned Larks was be-

tween variation in size of wooded wetlands (again, likely indicating the prevalence

of forest in general) and multi-year average precipitation within the same region

(Figure 7.5). Size of interaction is estimated as 0.00091, significance threshold as

0.00085 September precipitation amounts were identified as having high predictive

importance in our analyses. Again, Horned Larks are less abundant in areas con-

taining any substantial amount of forest habitat. However, this effect was lessened

in parts of the shortgrass prairie that received less rainfall in September (and also

throughout the rest of the year). This also is consistent with our knowledge of

the species, which prefers more arid areas with very short vegetation, and lower
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Figure 7.6: Grasshopper Sparrow. Interaction between elevation and total area of
cultivated crops

amounts of precipitation would allow such habitats to exist even relatively close

to the forested habitats along watercourses.

Grasshopper Sparrows (Ammodramus savannarum) are a species that lives in

moderately lush grassland habitat (by the standards of the shortgrass prairie re-

gion), an effect that we believe is indicated by the sharp drop in abundance of

this sparrow at higher elevations: Drier sites are closer to the rain shadow of the

Rocky Mountains. Figure 7.6 shows a threshold-like effect; note that three sepa-

rate partial-dependence prediction lines are essentially overlapping at higher eleva-

tions. However, the elevation effect was eased by the presence of cultivated crops at

higher-elevation sites within the grasslands. Size of this interaction was estimated

as 0.00223, significance threshold as 0.00093. We suspect that this unanticipated

finding results from the presence of artificial water sources, irrigating the cropland,

creating habitat that was more suitable for Grasshopper Sparrows. Again, inter-
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action detection provided us with evidence that human modification of landscapes

affected their suitability to birds, allowing Grasshopper Sparrows to live in areas

that would be unsuitable for them under natural conditions.

The last figure shows a case in which our analysis determined absence or in-

significance of an interaction. This is the result of the analysis for Red-winged

Blackbirds (Agelaius phoeniceus), in which two habitat-related influences are al-

most independent of each other (Figure 7.7). These blackbirds are inhabitants of

marshlands and may be associated with cultivated crops, both as areas for nesting

as well as for feeding. Thus, the analysis presents no surprises with the abundance

of Red-winged Blackbirds increasing both as the density of patches of open wa-

ter increase and as the proportion of cultivated crops increase. In the shortgrass

prairies, areas under cultivation may provide some of the most suitable habitat for

this species.
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Figure 7.7: Red-winged Blackbird. Very low interaction between density of patches
of open water and the proportion of the landscape in cultivated crops
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Although the original interaction detection technique allows detection of higher-

order interactions, we did not have an opportunity to conduct these tests for RMBO

data sets. K-way interactions are possible only between those groups of variables

that are involved in all possible K(K−1)/2 2-way interactions between each other

[26]. Such cliques of pairwise interactions never appeared during our analysis.

All interactions detected in RMBO data were very small. For comparison,

most interactions in data sets described in Section 5.5 are larger by an order or

two. This is a consequence of the fact that the data is noisy and difficult to model;

small sized of interactions tell us that we can’t improve performance much over the

restricted models. However, as long as these small improvements are significant,

they clearly indicate a presence of a real interaction in the data and in the domain.

7.5 Discussion

We have applied the process of interaction detection to noisy ecological data. We

discussed several potential problems that can arise with this kind of real data,

proposed possible solutions and presented the real results of applying this analysis

to the data.

We have two general observations about the interactions that were detected

in our analyses. First, the interactions were relatively subtle in nature, aside

from the one identified for Lark Buntings (Figure 7.2). By this we mean that the

effect of variation in one feature was only moderately altered by variation in the

second feature in the interactions, as seen by the nearly parallel natures of the

lines in the figures. This suggests that the analyses were able to detect modest

interactions well. Our second observation is that most of the habitat types involved

in the interactions were relatively uncommon in the shortgrass prairie region. For

example, 99% of the areas around individual sites were composed of less than 4%
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open water and less than 3% wooded wetlands. Two other habitat types were

highly patchily distributed, with a median percentage of less than 2.5% (but a

maximum in excess of 80%), and a median amount of cultivated crops on less than

18%, although some local areas had roughly 80% of their areas in cultivated crops.

Thus, the interactions that we detected are describing biological phenomena that

are occurring around only a small proportion of the sites. Again, this highlights

the sensitivity of the interaction detection algorithm.
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APPENDIX A

CONFIGURATIONS OF RMBO FEATURES

Table A.1 shows spatial extents at which data were used to describe habitat con-

figuration.

Table A.1: Spatial extents.
Size of Area GIS-layer Pixels

0.03 × 0.03 km individual pixel

0.45 × 0.45 km 15 pixels across

1.5 × 1.5 km 50 pixels across

4.5 × 4.5 km 150 pixels across

15 × 15 km 500 pixels across

45 × 45 km 1500 pixels across

We describe spatial extents both in terms of the actual areas examined, and as

a function of the number of pixels from which the configuration information was

obtained. At the smallest scale, the individual GIS-layer pixel, only the identity of

the habitat type could be obtained. At all larger scales, various metrics of habitat

configuration were calculated.

Table A.2 presents habitat configuration metrics entered into the models.

Table A.2: Habitat configuration metrics.
Feature Description Feature Name

Individual habitat

Total Area CA

Median Patch Size AREA MD

Standard Deviation AREA SD

Patch Density PD

Patch Shape LSI

Median Inter-patch Distance ENN MD

Edge Density ED

All habitat

Simpson’s Diversity Index SIDI

Median Fractal Dimensionality FRAC MD

St. Dev. of Fractal Dimensionality FRAC SD

We note both a brief description of the metrics, as well as the abbreviated names

under which they are calculated in the FRAGSTATS software. Metrics were of two

types. First, we used 7 different descriptions of configuration that were calculated
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separately for each of the habitat types represented within a given spatial extent.

Thus, for example with 4 habitat types, 28 such features would have non-zero

values for a given data point. Second, we calculated 3 other metrics of configuration

that summarized information across all habitat types present in an area. These

latter three provide information on the overall complexity of arrangement and

diversity of habitat types within an area. For descriptions of these metrics and

their calculation, see the documentation for the software that was used to calculate

the metrics at www.epa.gov/mrlc/nlcd-2001.html.
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